quiche/lib.rs
1// Copyright (C) 2018-2019, Cloudflare, Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// * Redistributions in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
16// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
17// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
18// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
19// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
20// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
21// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
22// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
23// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
24// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
27//! 🥧 Savoury implementation of the QUIC transport protocol and HTTP/3.
28//!
29//! [quiche] is an implementation of the QUIC transport protocol and HTTP/3 as
30//! specified by the [IETF]. It provides a low level API for processing QUIC
31//! packets and handling connection state. The application is responsible for
32//! providing I/O (e.g. sockets handling) as well as an event loop with support
33//! for timers.
34//!
35//! [quiche]: https://github.com/cloudflare/quiche/
36//! [ietf]: https://quicwg.org/
37//!
38//! ## Configuring connections
39//!
40//! The first step in establishing a QUIC connection using quiche is creating a
41//! [`Config`] object:
42//!
43//! ```
44//! let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
45//! config.set_application_protos(&[b"example-proto"]);
46//!
47//! // Additional configuration specific to application and use case...
48//! # Ok::<(), quiche::Error>(())
49//! ```
50//!
51//! The [`Config`] object controls important aspects of the QUIC connection such
52//! as QUIC version, ALPN IDs, flow control, congestion control, idle timeout
53//! and other properties or features.
54//!
55//! QUIC is a general-purpose transport protocol and there are several
56//! configuration properties where there is no reasonable default value. For
57//! example, the permitted number of concurrent streams of any particular type
58//! is dependent on the application running over QUIC, and other use-case
59//! specific concerns.
60//!
61//! quiche defaults several properties to zero, applications most likely need
62//! to set these to something else to satisfy their needs using the following:
63//!
64//! - [`set_initial_max_streams_bidi()`]
65//! - [`set_initial_max_streams_uni()`]
66//! - [`set_initial_max_data()`]
67//! - [`set_initial_max_stream_data_bidi_local()`]
68//! - [`set_initial_max_stream_data_bidi_remote()`]
69//! - [`set_initial_max_stream_data_uni()`]
70//!
71//! [`Config`] also holds TLS configuration. This can be changed by mutators on
72//! the an existing object, or by constructing a TLS context manually and
73//! creating a configuration using [`with_boring_ssl_ctx_builder()`].
74//!
75//! A configuration object can be shared among multiple connections.
76//!
77//! ### Connection setup
78//!
79//! On the client-side the [`connect()`] utility function can be used to create
80//! a new connection, while [`accept()`] is for servers:
81//!
82//! ```
83//! # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
84//! # let server_name = "quic.tech";
85//! # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
86//! # let peer = "127.0.0.1:1234".parse().unwrap();
87//! # let local = "127.0.0.1:4321".parse().unwrap();
88//! // Client connection.
89//! let conn =
90//! quiche::connect(Some(&server_name), &scid, local, peer, &mut config)?;
91//!
92//! // Server connection.
93//! # let peer = "127.0.0.1:1234".parse().unwrap();
94//! # let local = "127.0.0.1:4321".parse().unwrap();
95//! let conn = quiche::accept(&scid, None, local, peer, &mut config)?;
96//! # Ok::<(), quiche::Error>(())
97//! ```
98//!
99//! In both cases, the application is responsible for generating a new source
100//! connection ID that will be used to identify the new connection.
101//!
102//! The application also need to pass the address of the remote peer of the
103//! connection: in the case of a client that would be the address of the server
104//! it is trying to connect to, and for a server that is the address of the
105//! client that initiated the connection.
106//!
107//! ## Handling incoming packets
108//!
109//! Using the connection's [`recv()`] method the application can process
110//! incoming packets that belong to that connection from the network:
111//!
112//! ```no_run
113//! # let mut buf = [0; 512];
114//! # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
115//! # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
116//! # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
117//! # let peer = "127.0.0.1:1234".parse().unwrap();
118//! # let local = "127.0.0.1:4321".parse().unwrap();
119//! # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
120//! let to = socket.local_addr().unwrap();
121//!
122//! loop {
123//! let (read, from) = socket.recv_from(&mut buf).unwrap();
124//!
125//! let recv_info = quiche::RecvInfo { from, to };
126//!
127//! let read = match conn.recv(&mut buf[..read], recv_info) {
128//! Ok(v) => v,
129//!
130//! Err(quiche::Error::Done) => {
131//! // Done reading.
132//! break;
133//! },
134//!
135//! Err(e) => {
136//! // An error occurred, handle it.
137//! break;
138//! },
139//! };
140//! }
141//! # Ok::<(), quiche::Error>(())
142//! ```
143//!
144//! The application has to pass a [`RecvInfo`] structure in order to provide
145//! additional information about the received packet (such as the address it
146//! was received from).
147//!
148//! ## Generating outgoing packets
149//!
150//! Outgoing packet are generated using the connection's [`send()`] method
151//! instead:
152//!
153//! ```no_run
154//! # let mut out = [0; 512];
155//! # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
156//! # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
157//! # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
158//! # let peer = "127.0.0.1:1234".parse().unwrap();
159//! # let local = "127.0.0.1:4321".parse().unwrap();
160//! # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
161//! loop {
162//! let (write, send_info) = match conn.send(&mut out) {
163//! Ok(v) => v,
164//!
165//! Err(quiche::Error::Done) => {
166//! // Done writing.
167//! break;
168//! },
169//!
170//! Err(e) => {
171//! // An error occurred, handle it.
172//! break;
173//! },
174//! };
175//!
176//! socket.send_to(&out[..write], &send_info.to).unwrap();
177//! }
178//! # Ok::<(), quiche::Error>(())
179//! ```
180//!
181//! The application will be provided with a [`SendInfo`] structure providing
182//! additional information about the newly created packet (such as the address
183//! the packet should be sent to).
184//!
185//! When packets are sent, the application is responsible for maintaining a
186//! timer to react to time-based connection events. The timer expiration can be
187//! obtained using the connection's [`timeout()`] method.
188//!
189//! ```
190//! # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
191//! # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
192//! # let peer = "127.0.0.1:1234".parse().unwrap();
193//! # let local = "127.0.0.1:4321".parse().unwrap();
194//! # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
195//! let timeout = conn.timeout();
196//! # Ok::<(), quiche::Error>(())
197//! ```
198//!
199//! The application is responsible for providing a timer implementation, which
200//! can be specific to the operating system or networking framework used. When
201//! a timer expires, the connection's [`on_timeout()`] method should be called,
202//! after which additional packets might need to be sent on the network:
203//!
204//! ```no_run
205//! # let mut out = [0; 512];
206//! # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
207//! # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
208//! # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
209//! # let peer = "127.0.0.1:1234".parse().unwrap();
210//! # let local = "127.0.0.1:4321".parse().unwrap();
211//! # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
212//! // Timeout expired, handle it.
213//! conn.on_timeout();
214//!
215//! // Send more packets as needed after timeout.
216//! loop {
217//! let (write, send_info) = match conn.send(&mut out) {
218//! Ok(v) => v,
219//!
220//! Err(quiche::Error::Done) => {
221//! // Done writing.
222//! break;
223//! },
224//!
225//! Err(e) => {
226//! // An error occurred, handle it.
227//! break;
228//! },
229//! };
230//!
231//! socket.send_to(&out[..write], &send_info.to).unwrap();
232//! }
233//! # Ok::<(), quiche::Error>(())
234//! ```
235//!
236//! ### Pacing
237//!
238//! It is recommended that applications [pace] sending of outgoing packets to
239//! avoid creating packet bursts that could cause short-term congestion and
240//! losses in the network.
241//!
242//! quiche exposes pacing hints for outgoing packets through the [`at`] field
243//! of the [`SendInfo`] structure that is returned by the [`send()`] method.
244//! This field represents the time when a specific packet should be sent into
245//! the network.
246//!
247//! Applications can use these hints by artificially delaying the sending of
248//! packets through platform-specific mechanisms (such as the [`SO_TXTIME`]
249//! socket option on Linux), or custom methods (for example by using user-space
250//! timers).
251//!
252//! [pace]: https://datatracker.ietf.org/doc/html/rfc9002#section-7.7
253//! [`SO_TXTIME`]: https://man7.org/linux/man-pages/man8/tc-etf.8.html
254//!
255//! ## Sending and receiving stream data
256//!
257//! After some back and forth, the connection will complete its handshake and
258//! will be ready for sending or receiving application data.
259//!
260//! Data can be sent on a stream by using the [`stream_send()`] method:
261//!
262//! ```no_run
263//! # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
264//! # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
265//! # let peer = "127.0.0.1:1234".parse().unwrap();
266//! # let local = "127.0.0.1:4321".parse().unwrap();
267//! # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
268//! if conn.is_established() {
269//! // Handshake completed, send some data on stream 0.
270//! conn.stream_send(0, b"hello", true)?;
271//! }
272//! # Ok::<(), quiche::Error>(())
273//! ```
274//!
275//! The application can check whether there are any readable streams by using
276//! the connection's [`readable()`] method, which returns an iterator over all
277//! the streams that have outstanding data to read.
278//!
279//! The [`stream_recv()`] method can then be used to retrieve the application
280//! data from the readable stream:
281//!
282//! ```no_run
283//! # let mut buf = [0; 512];
284//! # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
285//! # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
286//! # let peer = "127.0.0.1:1234".parse().unwrap();
287//! # let local = "127.0.0.1:4321".parse().unwrap();
288//! # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
289//! if conn.is_established() {
290//! // Iterate over readable streams.
291//! for stream_id in conn.readable() {
292//! // Stream is readable, read until there's no more data.
293//! while let Ok((read, fin)) = conn.stream_recv(stream_id, &mut buf) {
294//! println!("Got {} bytes on stream {}", read, stream_id);
295//! }
296//! }
297//! }
298//! # Ok::<(), quiche::Error>(())
299//! ```
300//!
301//! ## HTTP/3
302//!
303//! The quiche [HTTP/3 module] provides a high level API for sending and
304//! receiving HTTP requests and responses on top of the QUIC transport protocol.
305//!
306//! [`Config`]: https://docs.quic.tech/quiche/struct.Config.html
307//! [`set_initial_max_streams_bidi()`]: https://docs.rs/quiche/latest/quiche/struct.Config.html#method.set_initial_max_streams_bidi
308//! [`set_initial_max_streams_uni()`]: https://docs.rs/quiche/latest/quiche/struct.Config.html#method.set_initial_max_streams_uni
309//! [`set_initial_max_data()`]: https://docs.rs/quiche/latest/quiche/struct.Config.html#method.set_initial_max_data
310//! [`set_initial_max_stream_data_bidi_local()`]: https://docs.rs/quiche/latest/quiche/struct.Config.html#method.set_initial_max_stream_data_bidi_local
311//! [`set_initial_max_stream_data_bidi_remote()`]: https://docs.rs/quiche/latest/quiche/struct.Config.html#method.set_initial_max_stream_data_bidi_remote
312//! [`set_initial_max_stream_data_uni()`]: https://docs.rs/quiche/latest/quiche/struct.Config.html#method.set_initial_max_stream_data_uni
313//! [`with_boring_ssl_ctx_builder()`]: https://docs.quic.tech/quiche/struct.Config.html#method.with_boring_ssl_ctx_builder
314//! [`connect()`]: fn.connect.html
315//! [`accept()`]: fn.accept.html
316//! [`recv()`]: struct.Connection.html#method.recv
317//! [`RecvInfo`]: struct.RecvInfo.html
318//! [`send()`]: struct.Connection.html#method.send
319//! [`SendInfo`]: struct.SendInfo.html
320//! [`at`]: struct.SendInfo.html#structfield.at
321//! [`timeout()`]: struct.Connection.html#method.timeout
322//! [`on_timeout()`]: struct.Connection.html#method.on_timeout
323//! [`stream_send()`]: struct.Connection.html#method.stream_send
324//! [`readable()`]: struct.Connection.html#method.readable
325//! [`stream_recv()`]: struct.Connection.html#method.stream_recv
326//! [HTTP/3 module]: h3/index.html
327//!
328//! ## Congestion Control
329//!
330//! The quiche library provides a high-level API for configuring which
331//! congestion control algorithm to use throughout the QUIC connection.
332//!
333//! When a QUIC connection is created, the application can optionally choose
334//! which CC algorithm to use. See [`CongestionControlAlgorithm`] for currently
335//! available congestion control algorithms.
336//!
337//! For example:
338//!
339//! ```
340//! let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION).unwrap();
341//! config.set_cc_algorithm(quiche::CongestionControlAlgorithm::Reno);
342//! ```
343//!
344//! Alternatively, you can configure the congestion control algorithm to use
345//! by its name.
346//!
347//! ```
348//! let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION).unwrap();
349//! config.set_cc_algorithm_name("reno").unwrap();
350//! ```
351//!
352//! Note that the CC algorithm should be configured before calling [`connect()`]
353//! or [`accept()`]. Otherwise the connection will use a default CC algorithm.
354//!
355//! [`CongestionControlAlgorithm`]: enum.CongestionControlAlgorithm.html
356//!
357//! ## Feature flags
358//!
359//! quiche defines a number of [feature flags] to reduce the amount of compiled
360//! code and dependencies:
361//!
362//! * `boringssl-vendored` (default): Build the vendored BoringSSL library.
363//!
364//! * `boringssl-boring-crate`: Use the BoringSSL library provided by the
365//! [boring] crate. It takes precedence over `boringssl-vendored` if both
366//! features are enabled.
367//!
368//! * `pkg-config-meta`: Generate pkg-config metadata file for libquiche.
369//!
370//! * `ffi`: Build and expose the FFI API.
371//!
372//! * `qlog`: Enable support for the [qlog] logging format.
373//!
374//! [feature flags]: https://doc.rust-lang.org/cargo/reference/manifest.html#the-features-section
375//! [boring]: https://crates.io/crates/boring
376//! [qlog]: https://datatracker.ietf.org/doc/html/draft-ietf-quic-qlog-main-schema
377
378#![allow(clippy::upper_case_acronyms)]
379#![warn(missing_docs)]
380#![warn(unused_qualifications)]
381#![cfg_attr(docsrs, feature(doc_cfg))]
382
383#[macro_use]
384extern crate log;
385
386use std::cmp;
387
388use std::collections::VecDeque;
389
390use std::net::SocketAddr;
391
392use std::str::FromStr;
393
394use std::sync::Arc;
395
396use std::time::Duration;
397use std::time::Instant;
398
399#[cfg(feature = "qlog")]
400use qlog::events::connectivity::ConnectivityEventType;
401#[cfg(feature = "qlog")]
402use qlog::events::connectivity::TransportOwner;
403#[cfg(feature = "qlog")]
404use qlog::events::quic::RecoveryEventType;
405#[cfg(feature = "qlog")]
406use qlog::events::quic::TransportEventType;
407#[cfg(feature = "qlog")]
408use qlog::events::DataRecipient;
409#[cfg(feature = "qlog")]
410use qlog::events::Event;
411#[cfg(feature = "qlog")]
412use qlog::events::EventData;
413#[cfg(feature = "qlog")]
414use qlog::events::EventImportance;
415#[cfg(feature = "qlog")]
416use qlog::events::EventType;
417#[cfg(feature = "qlog")]
418use qlog::events::RawInfo;
419
420use smallvec::SmallVec;
421
422use crate::range_buf::DefaultBufFactory;
423
424use crate::recovery::OnAckReceivedOutcome;
425use crate::recovery::OnLossDetectionTimeoutOutcome;
426use crate::recovery::RecoveryOps;
427use crate::recovery::ReleaseDecision;
428
429use crate::stream::RecvAction;
430use crate::stream::StreamPriorityKey;
431
432/// The current QUIC wire version.
433pub const PROTOCOL_VERSION: u32 = PROTOCOL_VERSION_V1;
434
435/// Supported QUIC versions.
436const PROTOCOL_VERSION_V1: u32 = 0x0000_0001;
437
438/// The maximum length of a connection ID.
439pub const MAX_CONN_ID_LEN: usize = packet::MAX_CID_LEN as usize;
440
441/// The minimum length of Initial packets sent by a client.
442pub const MIN_CLIENT_INITIAL_LEN: usize = 1200;
443
444/// The default initial RTT.
445const DEFAULT_INITIAL_RTT: Duration = Duration::from_millis(333);
446
447const PAYLOAD_MIN_LEN: usize = 4;
448
449// PATH_CHALLENGE (9 bytes) + AEAD tag (16 bytes).
450const MIN_PROBING_SIZE: usize = 25;
451
452const MAX_AMPLIFICATION_FACTOR: usize = 3;
453
454// The maximum number of tracked packet number ranges that need to be acked.
455//
456// This represents more or less how many ack blocks can fit in a typical packet.
457const MAX_ACK_RANGES: usize = 68;
458
459// The highest possible stream ID allowed.
460const MAX_STREAM_ID: u64 = 1 << 60;
461
462// The default max_datagram_size used in congestion control.
463const MAX_SEND_UDP_PAYLOAD_SIZE: usize = 1200;
464
465// The default length of DATAGRAM queues.
466const DEFAULT_MAX_DGRAM_QUEUE_LEN: usize = 0;
467
468// The default length of PATH_CHALLENGE receive queue.
469const DEFAULT_MAX_PATH_CHALLENGE_RX_QUEUE_LEN: usize = 3;
470
471// The DATAGRAM standard recommends either none or 65536 as maximum DATAGRAM
472// frames size. We enforce the recommendation for forward compatibility.
473const MAX_DGRAM_FRAME_SIZE: u64 = 65536;
474
475// The length of the payload length field.
476const PAYLOAD_LENGTH_LEN: usize = 2;
477
478// The number of undecryptable that can be buffered.
479const MAX_UNDECRYPTABLE_PACKETS: usize = 10;
480
481const RESERVED_VERSION_MASK: u32 = 0xfafafafa;
482
483// The default size of the receiver connection flow control window.
484const DEFAULT_CONNECTION_WINDOW: u64 = 48 * 1024;
485
486// The maximum size of the receiver connection flow control window.
487const MAX_CONNECTION_WINDOW: u64 = 24 * 1024 * 1024;
488
489// How much larger the connection flow control window need to be larger than
490// the stream flow control window.
491const CONNECTION_WINDOW_FACTOR: f64 = 1.5;
492
493// How many probing packet timeouts do we tolerate before considering the path
494// validation as failed.
495const MAX_PROBING_TIMEOUTS: usize = 3;
496
497// The default initial congestion window size in terms of packet count.
498const DEFAULT_INITIAL_CONGESTION_WINDOW_PACKETS: usize = 10;
499
500// The maximum data offset that can be stored in a crypto stream.
501const MAX_CRYPTO_STREAM_OFFSET: u64 = 1 << 16;
502
503// The send capacity factor.
504const TX_CAP_FACTOR: f64 = 1.0;
505
506/// Ancillary information about incoming packets.
507#[derive(Clone, Copy, Debug, PartialEq, Eq)]
508pub struct RecvInfo {
509 /// The remote address the packet was received from.
510 pub from: SocketAddr,
511
512 /// The local address the packet was received on.
513 pub to: SocketAddr,
514}
515
516/// Ancillary information about outgoing packets.
517#[derive(Clone, Copy, Debug, PartialEq, Eq)]
518pub struct SendInfo {
519 /// The local address the packet should be sent from.
520 pub from: SocketAddr,
521
522 /// The remote address the packet should be sent to.
523 pub to: SocketAddr,
524
525 /// The time to send the packet out.
526 ///
527 /// See [Pacing] for more details.
528 ///
529 /// [Pacing]: index.html#pacing
530 pub at: Instant,
531}
532
533/// The side of the stream to be shut down.
534///
535/// This should be used when calling [`stream_shutdown()`].
536///
537/// [`stream_shutdown()`]: struct.Connection.html#method.stream_shutdown
538#[repr(C)]
539#[derive(PartialEq, Eq)]
540pub enum Shutdown {
541 /// Stop receiving stream data.
542 Read = 0,
543
544 /// Stop sending stream data.
545 Write = 1,
546}
547
548/// Qlog logging level.
549#[repr(C)]
550#[cfg(feature = "qlog")]
551#[cfg_attr(docsrs, doc(cfg(feature = "qlog")))]
552pub enum QlogLevel {
553 /// Logs any events of Core importance.
554 Core = 0,
555
556 /// Logs any events of Core and Base importance.
557 Base = 1,
558
559 /// Logs any events of Core, Base and Extra importance
560 Extra = 2,
561}
562
563/// Stores configuration shared between multiple connections.
564pub struct Config {
565 local_transport_params: TransportParams,
566
567 version: u32,
568
569 tls_ctx: tls::Context,
570
571 application_protos: Vec<Vec<u8>>,
572
573 grease: bool,
574
575 cc_algorithm: CongestionControlAlgorithm,
576 custom_bbr_params: Option<BbrParams>,
577 initial_congestion_window_packets: usize,
578 enable_relaxed_loss_threshold: bool,
579
580 pmtud: bool,
581 pmtud_max_probes: u8,
582
583 hystart: bool,
584
585 pacing: bool,
586 /// Send rate limit in Mbps
587 max_pacing_rate: Option<u64>,
588
589 tx_cap_factor: f64,
590
591 dgram_recv_max_queue_len: usize,
592 dgram_send_max_queue_len: usize,
593
594 path_challenge_recv_max_queue_len: usize,
595
596 max_send_udp_payload_size: usize,
597
598 max_connection_window: u64,
599 max_stream_window: u64,
600
601 max_amplification_factor: usize,
602
603 disable_dcid_reuse: bool,
604
605 track_unknown_transport_params: Option<usize>,
606
607 initial_rtt: Duration,
608}
609
610// See https://quicwg.org/base-drafts/rfc9000.html#section-15
611fn is_reserved_version(version: u32) -> bool {
612 version & RESERVED_VERSION_MASK == version
613}
614
615impl Config {
616 /// Creates a config object with the given version.
617 ///
618 /// ## Examples:
619 ///
620 /// ```
621 /// let config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
622 /// # Ok::<(), quiche::Error>(())
623 /// ```
624 pub fn new(version: u32) -> Result<Config> {
625 Self::with_tls_ctx(version, tls::Context::new()?)
626 }
627
628 /// Creates a config object with the given version and
629 /// [`SslContextBuilder`].
630 ///
631 /// This is useful for applications that wish to manually configure
632 /// [`SslContextBuilder`].
633 ///
634 /// [`SslContextBuilder`]: https://docs.rs/boring/latest/boring/ssl/struct.SslContextBuilder.html
635 #[cfg(feature = "boringssl-boring-crate")]
636 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
637 pub fn with_boring_ssl_ctx_builder(
638 version: u32, tls_ctx_builder: boring::ssl::SslContextBuilder,
639 ) -> Result<Config> {
640 Self::with_tls_ctx(version, tls::Context::from_boring(tls_ctx_builder))
641 }
642
643 fn with_tls_ctx(version: u32, tls_ctx: tls::Context) -> Result<Config> {
644 if !is_reserved_version(version) && !version_is_supported(version) {
645 return Err(Error::UnknownVersion);
646 }
647
648 Ok(Config {
649 local_transport_params: TransportParams::default(),
650 version,
651 tls_ctx,
652 application_protos: Vec::new(),
653 grease: true,
654 cc_algorithm: CongestionControlAlgorithm::CUBIC,
655 custom_bbr_params: None,
656 initial_congestion_window_packets:
657 DEFAULT_INITIAL_CONGESTION_WINDOW_PACKETS,
658 enable_relaxed_loss_threshold: false,
659 pmtud: false,
660 pmtud_max_probes: pmtud::MAX_PROBES_DEFAULT,
661 hystart: true,
662 pacing: true,
663 max_pacing_rate: None,
664
665 tx_cap_factor: TX_CAP_FACTOR,
666
667 dgram_recv_max_queue_len: DEFAULT_MAX_DGRAM_QUEUE_LEN,
668 dgram_send_max_queue_len: DEFAULT_MAX_DGRAM_QUEUE_LEN,
669
670 path_challenge_recv_max_queue_len:
671 DEFAULT_MAX_PATH_CHALLENGE_RX_QUEUE_LEN,
672
673 max_send_udp_payload_size: MAX_SEND_UDP_PAYLOAD_SIZE,
674
675 max_connection_window: MAX_CONNECTION_WINDOW,
676 max_stream_window: stream::MAX_STREAM_WINDOW,
677
678 max_amplification_factor: MAX_AMPLIFICATION_FACTOR,
679
680 disable_dcid_reuse: false,
681
682 track_unknown_transport_params: None,
683 initial_rtt: DEFAULT_INITIAL_RTT,
684 })
685 }
686
687 /// Configures the given certificate chain.
688 ///
689 /// The content of `file` is parsed as a PEM-encoded leaf certificate,
690 /// followed by optional intermediate certificates.
691 ///
692 /// ## Examples:
693 ///
694 /// ```no_run
695 /// # let mut config = quiche::Config::new(0xbabababa)?;
696 /// config.load_cert_chain_from_pem_file("/path/to/cert.pem")?;
697 /// # Ok::<(), quiche::Error>(())
698 /// ```
699 pub fn load_cert_chain_from_pem_file(&mut self, file: &str) -> Result<()> {
700 self.tls_ctx.use_certificate_chain_file(file)
701 }
702
703 /// Configures the given private key.
704 ///
705 /// The content of `file` is parsed as a PEM-encoded private key.
706 ///
707 /// ## Examples:
708 ///
709 /// ```no_run
710 /// # let mut config = quiche::Config::new(0xbabababa)?;
711 /// config.load_priv_key_from_pem_file("/path/to/key.pem")?;
712 /// # Ok::<(), quiche::Error>(())
713 /// ```
714 pub fn load_priv_key_from_pem_file(&mut self, file: &str) -> Result<()> {
715 self.tls_ctx.use_privkey_file(file)
716 }
717
718 /// Specifies a file where trusted CA certificates are stored for the
719 /// purposes of certificate verification.
720 ///
721 /// The content of `file` is parsed as a PEM-encoded certificate chain.
722 ///
723 /// ## Examples:
724 ///
725 /// ```no_run
726 /// # let mut config = quiche::Config::new(0xbabababa)?;
727 /// config.load_verify_locations_from_file("/path/to/cert.pem")?;
728 /// # Ok::<(), quiche::Error>(())
729 /// ```
730 pub fn load_verify_locations_from_file(&mut self, file: &str) -> Result<()> {
731 self.tls_ctx.load_verify_locations_from_file(file)
732 }
733
734 /// Specifies a directory where trusted CA certificates are stored for the
735 /// purposes of certificate verification.
736 ///
737 /// The content of `dir` a set of PEM-encoded certificate chains.
738 ///
739 /// ## Examples:
740 ///
741 /// ```no_run
742 /// # let mut config = quiche::Config::new(0xbabababa)?;
743 /// config.load_verify_locations_from_directory("/path/to/certs")?;
744 /// # Ok::<(), quiche::Error>(())
745 /// ```
746 pub fn load_verify_locations_from_directory(
747 &mut self, dir: &str,
748 ) -> Result<()> {
749 self.tls_ctx.load_verify_locations_from_directory(dir)
750 }
751
752 /// Configures whether to verify the peer's certificate.
753 ///
754 /// This should usually be `true` for client-side connections and `false`
755 /// for server-side ones.
756 ///
757 /// Note that by default, no verification is performed.
758 ///
759 /// Also note that on the server-side, enabling verification of the peer
760 /// will trigger a certificate request and make authentication errors
761 /// fatal, but will still allow anonymous clients (i.e. clients that
762 /// don't present a certificate at all). Servers can check whether a
763 /// client presented a certificate by calling [`peer_cert()`] if they
764 /// need to.
765 ///
766 /// [`peer_cert()`]: struct.Connection.html#method.peer_cert
767 pub fn verify_peer(&mut self, verify: bool) {
768 self.tls_ctx.set_verify(verify);
769 }
770
771 /// Configures whether to do path MTU discovery.
772 ///
773 /// The default value is `false`.
774 pub fn discover_pmtu(&mut self, discover: bool) {
775 self.pmtud = discover;
776 }
777
778 /// Configures the maximum number of PMTUD probe attempts before treating
779 /// a probe size as failed.
780 ///
781 /// Defaults to 3 per [RFC 8899 Section 5.1.2](https://datatracker.ietf.org/doc/html/rfc8899#section-5.1.2).
782 /// If 0 is passed, the default value is used.
783 pub fn set_pmtud_max_probes(&mut self, max_probes: u8) {
784 self.pmtud_max_probes = max_probes;
785 }
786
787 /// Configures whether to send GREASE values.
788 ///
789 /// The default value is `true`.
790 pub fn grease(&mut self, grease: bool) {
791 self.grease = grease;
792 }
793
794 /// Enables logging of secrets.
795 ///
796 /// When logging is enabled, the [`set_keylog()`] method must be called on
797 /// the connection for its cryptographic secrets to be logged in the
798 /// [keylog] format to the specified writer.
799 ///
800 /// [`set_keylog()`]: struct.Connection.html#method.set_keylog
801 /// [keylog]: https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format
802 pub fn log_keys(&mut self) {
803 self.tls_ctx.enable_keylog();
804 }
805
806 /// Configures the session ticket key material.
807 ///
808 /// On the server this key will be used to encrypt and decrypt session
809 /// tickets, used to perform session resumption without server-side state.
810 ///
811 /// By default a key is generated internally, and rotated regularly, so
812 /// applications don't need to call this unless they need to use a
813 /// specific key (e.g. in order to support resumption across multiple
814 /// servers), in which case the application is also responsible for
815 /// rotating the key to provide forward secrecy.
816 pub fn set_ticket_key(&mut self, key: &[u8]) -> Result<()> {
817 self.tls_ctx.set_ticket_key(key)
818 }
819
820 /// Enables sending or receiving early data.
821 pub fn enable_early_data(&mut self) {
822 self.tls_ctx.set_early_data_enabled(true);
823 }
824
825 /// Configures the list of supported application protocols.
826 ///
827 /// On the client this configures the list of protocols to send to the
828 /// server as part of the ALPN extension.
829 ///
830 /// On the server this configures the list of supported protocols to match
831 /// against the client-supplied list.
832 ///
833 /// Applications must set a value, but no default is provided.
834 ///
835 /// ## Examples:
836 ///
837 /// ```
838 /// # let mut config = quiche::Config::new(0xbabababa)?;
839 /// config.set_application_protos(&[b"http/1.1", b"http/0.9"]);
840 /// # Ok::<(), quiche::Error>(())
841 /// ```
842 pub fn set_application_protos(
843 &mut self, protos_list: &[&[u8]],
844 ) -> Result<()> {
845 self.application_protos =
846 protos_list.iter().map(|s| s.to_vec()).collect();
847
848 self.tls_ctx.set_alpn(protos_list)
849 }
850
851 /// Configures the list of supported application protocols using wire
852 /// format.
853 ///
854 /// The list of protocols `protos` must be a series of non-empty, 8-bit
855 /// length-prefixed strings.
856 ///
857 /// See [`set_application_protos`](Self::set_application_protos) for more
858 /// background about application protocols.
859 ///
860 /// ## Examples:
861 ///
862 /// ```
863 /// # let mut config = quiche::Config::new(0xbabababa)?;
864 /// config.set_application_protos_wire_format(b"\x08http/1.1\x08http/0.9")?;
865 /// # Ok::<(), quiche::Error>(())
866 /// ```
867 pub fn set_application_protos_wire_format(
868 &mut self, protos: &[u8],
869 ) -> Result<()> {
870 let mut b = octets::Octets::with_slice(protos);
871
872 let mut protos_list = Vec::new();
873
874 while let Ok(proto) = b.get_bytes_with_u8_length() {
875 protos_list.push(proto.buf());
876 }
877
878 self.set_application_protos(&protos_list)
879 }
880
881 /// Sets the anti-amplification limit factor.
882 ///
883 /// The default value is `3`.
884 pub fn set_max_amplification_factor(&mut self, v: usize) {
885 self.max_amplification_factor = v;
886 }
887
888 /// Sets the send capacity factor.
889 ///
890 /// The default value is `1`.
891 pub fn set_send_capacity_factor(&mut self, v: f64) {
892 self.tx_cap_factor = v;
893 }
894
895 /// Sets the connection's initial RTT.
896 ///
897 /// The default value is `333`.
898 pub fn set_initial_rtt(&mut self, v: Duration) {
899 self.initial_rtt = v;
900 }
901
902 /// Sets the `max_idle_timeout` transport parameter, in milliseconds.
903 ///
904 /// The default value is infinite, that is, no timeout is used.
905 pub fn set_max_idle_timeout(&mut self, v: u64) {
906 self.local_transport_params.max_idle_timeout =
907 cmp::min(v, octets::MAX_VAR_INT);
908 }
909
910 /// Sets the `max_udp_payload_size transport` parameter.
911 ///
912 /// The default value is `65527`.
913 pub fn set_max_recv_udp_payload_size(&mut self, v: usize) {
914 self.local_transport_params.max_udp_payload_size =
915 cmp::min(v as u64, octets::MAX_VAR_INT);
916 }
917
918 /// Sets the maximum outgoing UDP payload size.
919 ///
920 /// The default and minimum value is `1200`.
921 pub fn set_max_send_udp_payload_size(&mut self, v: usize) {
922 self.max_send_udp_payload_size = cmp::max(v, MAX_SEND_UDP_PAYLOAD_SIZE);
923 }
924
925 /// Sets the `initial_max_data` transport parameter.
926 ///
927 /// When set to a non-zero value quiche will only allow at most `v` bytes of
928 /// incoming stream data to be buffered for the whole connection (that is,
929 /// data that is not yet read by the application) and will allow more data
930 /// to be received as the buffer is consumed by the application.
931 ///
932 /// When set to zero, either explicitly or via the default, quiche will not
933 /// give any flow control to the peer, preventing it from sending any stream
934 /// data.
935 ///
936 /// The default value is `0`.
937 pub fn set_initial_max_data(&mut self, v: u64) {
938 self.local_transport_params.initial_max_data =
939 cmp::min(v, octets::MAX_VAR_INT);
940 }
941
942 /// Sets the `initial_max_stream_data_bidi_local` transport parameter.
943 ///
944 /// When set to a non-zero value quiche will only allow at most `v` bytes
945 /// of incoming stream data to be buffered for each locally-initiated
946 /// bidirectional stream (that is, data that is not yet read by the
947 /// application) and will allow more data to be received as the buffer is
948 /// consumed by the application.
949 ///
950 /// When set to zero, either explicitly or via the default, quiche will not
951 /// give any flow control to the peer, preventing it from sending any stream
952 /// data.
953 ///
954 /// The default value is `0`.
955 pub fn set_initial_max_stream_data_bidi_local(&mut self, v: u64) {
956 self.local_transport_params
957 .initial_max_stream_data_bidi_local =
958 cmp::min(v, octets::MAX_VAR_INT);
959 }
960
961 /// Sets the `initial_max_stream_data_bidi_remote` transport parameter.
962 ///
963 /// When set to a non-zero value quiche will only allow at most `v` bytes
964 /// of incoming stream data to be buffered for each remotely-initiated
965 /// bidirectional stream (that is, data that is not yet read by the
966 /// application) and will allow more data to be received as the buffer is
967 /// consumed by the application.
968 ///
969 /// When set to zero, either explicitly or via the default, quiche will not
970 /// give any flow control to the peer, preventing it from sending any stream
971 /// data.
972 ///
973 /// The default value is `0`.
974 pub fn set_initial_max_stream_data_bidi_remote(&mut self, v: u64) {
975 self.local_transport_params
976 .initial_max_stream_data_bidi_remote =
977 cmp::min(v, octets::MAX_VAR_INT);
978 }
979
980 /// Sets the `initial_max_stream_data_uni` transport parameter.
981 ///
982 /// When set to a non-zero value quiche will only allow at most `v` bytes
983 /// of incoming stream data to be buffered for each unidirectional stream
984 /// (that is, data that is not yet read by the application) and will allow
985 /// more data to be received as the buffer is consumed by the application.
986 ///
987 /// When set to zero, either explicitly or via the default, quiche will not
988 /// give any flow control to the peer, preventing it from sending any stream
989 /// data.
990 ///
991 /// The default value is `0`.
992 pub fn set_initial_max_stream_data_uni(&mut self, v: u64) {
993 self.local_transport_params.initial_max_stream_data_uni =
994 cmp::min(v, octets::MAX_VAR_INT);
995 }
996
997 /// Sets the `initial_max_streams_bidi` transport parameter.
998 ///
999 /// When set to a non-zero value quiche will only allow `v` number of
1000 /// concurrent remotely-initiated bidirectional streams to be open at any
1001 /// given time and will increase the limit automatically as streams are
1002 /// completed.
1003 ///
1004 /// When set to zero, either explicitly or via the default, quiche will not
1005 /// not allow the peer to open any bidirectional streams.
1006 ///
1007 /// A bidirectional stream is considered completed when all incoming data
1008 /// has been read by the application (up to the `fin` offset) or the
1009 /// stream's read direction has been shutdown, and all outgoing data has
1010 /// been acked by the peer (up to the `fin` offset) or the stream's write
1011 /// direction has been shutdown.
1012 ///
1013 /// The default value is `0`.
1014 pub fn set_initial_max_streams_bidi(&mut self, v: u64) {
1015 self.local_transport_params.initial_max_streams_bidi =
1016 cmp::min(v, octets::MAX_VAR_INT);
1017 }
1018
1019 /// Sets the `initial_max_streams_uni` transport parameter.
1020 ///
1021 /// When set to a non-zero value quiche will only allow `v` number of
1022 /// concurrent remotely-initiated unidirectional streams to be open at any
1023 /// given time and will increase the limit automatically as streams are
1024 /// completed.
1025 ///
1026 /// When set to zero, either explicitly or via the default, quiche will not
1027 /// not allow the peer to open any unidirectional streams.
1028 ///
1029 /// A unidirectional stream is considered completed when all incoming data
1030 /// has been read by the application (up to the `fin` offset) or the
1031 /// stream's read direction has been shutdown.
1032 ///
1033 /// The default value is `0`.
1034 pub fn set_initial_max_streams_uni(&mut self, v: u64) {
1035 self.local_transport_params.initial_max_streams_uni =
1036 cmp::min(v, octets::MAX_VAR_INT);
1037 }
1038
1039 /// Sets the `ack_delay_exponent` transport parameter.
1040 ///
1041 /// The default value is `3`.
1042 pub fn set_ack_delay_exponent(&mut self, v: u64) {
1043 self.local_transport_params.ack_delay_exponent =
1044 cmp::min(v, octets::MAX_VAR_INT);
1045 }
1046
1047 /// Sets the `max_ack_delay` transport parameter.
1048 ///
1049 /// The default value is `25`.
1050 pub fn set_max_ack_delay(&mut self, v: u64) {
1051 self.local_transport_params.max_ack_delay =
1052 cmp::min(v, octets::MAX_VAR_INT);
1053 }
1054
1055 /// Sets the `active_connection_id_limit` transport parameter.
1056 ///
1057 /// The default value is `2`. Lower values will be ignored.
1058 pub fn set_active_connection_id_limit(&mut self, v: u64) {
1059 if v >= 2 {
1060 self.local_transport_params.active_conn_id_limit =
1061 cmp::min(v, octets::MAX_VAR_INT);
1062 }
1063 }
1064
1065 /// Sets the `disable_active_migration` transport parameter.
1066 ///
1067 /// The default value is `false`.
1068 pub fn set_disable_active_migration(&mut self, v: bool) {
1069 self.local_transport_params.disable_active_migration = v;
1070 }
1071
1072 /// Sets the congestion control algorithm used.
1073 ///
1074 /// The default value is `CongestionControlAlgorithm::CUBIC`.
1075 pub fn set_cc_algorithm(&mut self, algo: CongestionControlAlgorithm) {
1076 self.cc_algorithm = algo;
1077 }
1078
1079 /// Sets custom BBR settings.
1080 ///
1081 /// This API is experimental and will be removed in the future.
1082 ///
1083 /// Currently this only applies if cc_algorithm is
1084 /// `CongestionControlAlgorithm::Bbr2Gcongestion` is set.
1085 ///
1086 /// The default value is `None`.
1087 #[cfg(feature = "internal")]
1088 #[doc(hidden)]
1089 pub fn set_custom_bbr_params(&mut self, custom_bbr_settings: BbrParams) {
1090 self.custom_bbr_params = Some(custom_bbr_settings);
1091 }
1092
1093 /// Sets the congestion control algorithm used by string.
1094 ///
1095 /// The default value is `cubic`. On error `Error::CongestionControl`
1096 /// will be returned.
1097 ///
1098 /// ## Examples:
1099 ///
1100 /// ```
1101 /// # let mut config = quiche::Config::new(0xbabababa)?;
1102 /// config.set_cc_algorithm_name("reno");
1103 /// # Ok::<(), quiche::Error>(())
1104 /// ```
1105 pub fn set_cc_algorithm_name(&mut self, name: &str) -> Result<()> {
1106 self.cc_algorithm = CongestionControlAlgorithm::from_str(name)?;
1107
1108 Ok(())
1109 }
1110
1111 /// Sets initial congestion window size in terms of packet count.
1112 ///
1113 /// The default value is 10.
1114 pub fn set_initial_congestion_window_packets(&mut self, packets: usize) {
1115 self.initial_congestion_window_packets = packets;
1116 }
1117
1118 /// Configure whether to enable relaxed loss detection on spurious loss.
1119 ///
1120 /// The default value is false.
1121 pub fn set_enable_relaxed_loss_threshold(&mut self, enable: bool) {
1122 self.enable_relaxed_loss_threshold = enable;
1123 }
1124
1125 /// Configures whether to enable HyStart++.
1126 ///
1127 /// The default value is `true`.
1128 pub fn enable_hystart(&mut self, v: bool) {
1129 self.hystart = v;
1130 }
1131
1132 /// Configures whether to enable pacing.
1133 ///
1134 /// The default value is `true`.
1135 pub fn enable_pacing(&mut self, v: bool) {
1136 self.pacing = v;
1137 }
1138
1139 /// Sets the max value for pacing rate.
1140 ///
1141 /// By default pacing rate is not limited.
1142 pub fn set_max_pacing_rate(&mut self, v: u64) {
1143 self.max_pacing_rate = Some(v);
1144 }
1145
1146 /// Configures whether to enable receiving DATAGRAM frames.
1147 ///
1148 /// When enabled, the `max_datagram_frame_size` transport parameter is set
1149 /// to 65536 as recommended by draft-ietf-quic-datagram-01.
1150 ///
1151 /// The default is `false`.
1152 pub fn enable_dgram(
1153 &mut self, enabled: bool, recv_queue_len: usize, send_queue_len: usize,
1154 ) {
1155 self.local_transport_params.max_datagram_frame_size = if enabled {
1156 Some(MAX_DGRAM_FRAME_SIZE)
1157 } else {
1158 None
1159 };
1160 self.dgram_recv_max_queue_len = recv_queue_len;
1161 self.dgram_send_max_queue_len = send_queue_len;
1162 }
1163
1164 /// Configures the max number of queued received PATH_CHALLENGE frames.
1165 ///
1166 /// When an endpoint receives a PATH_CHALLENGE frame and the queue is full,
1167 /// the frame is discarded.
1168 ///
1169 /// The default is 3.
1170 pub fn set_path_challenge_recv_max_queue_len(&mut self, queue_len: usize) {
1171 self.path_challenge_recv_max_queue_len = queue_len;
1172 }
1173
1174 /// Sets the maximum size of the connection window.
1175 ///
1176 /// The default value is MAX_CONNECTION_WINDOW (24MBytes).
1177 pub fn set_max_connection_window(&mut self, v: u64) {
1178 self.max_connection_window = v;
1179 }
1180
1181 /// Sets the maximum size of the stream window.
1182 ///
1183 /// The default value is MAX_STREAM_WINDOW (16MBytes).
1184 pub fn set_max_stream_window(&mut self, v: u64) {
1185 self.max_stream_window = v;
1186 }
1187
1188 /// Sets the initial stateless reset token.
1189 ///
1190 /// This value is only advertised by servers. Setting a stateless retry
1191 /// token as a client has no effect on the connection.
1192 ///
1193 /// The default value is `None`.
1194 pub fn set_stateless_reset_token(&mut self, v: Option<u128>) {
1195 self.local_transport_params.stateless_reset_token = v;
1196 }
1197
1198 /// Sets whether the QUIC connection should avoid reusing DCIDs over
1199 /// different paths.
1200 ///
1201 /// When set to `true`, it ensures that a destination Connection ID is never
1202 /// reused on different paths. Such behaviour may lead to connection stall
1203 /// if the peer performs a non-voluntary migration (e.g., NAT rebinding) and
1204 /// does not provide additional destination Connection IDs to handle such
1205 /// event.
1206 ///
1207 /// The default value is `false`.
1208 pub fn set_disable_dcid_reuse(&mut self, v: bool) {
1209 self.disable_dcid_reuse = v;
1210 }
1211
1212 /// Enables tracking unknown transport parameters.
1213 ///
1214 /// Specify the maximum number of bytes used to track unknown transport
1215 /// parameters. The size includes the identifier and its value. If storing a
1216 /// transport parameter would cause the limit to be exceeded, it is quietly
1217 /// dropped.
1218 ///
1219 /// The default is that the feature is disabled.
1220 pub fn enable_track_unknown_transport_parameters(&mut self, size: usize) {
1221 self.track_unknown_transport_params = Some(size);
1222 }
1223}
1224
1225/// Tracks the health of the tx_buffered value.
1226#[derive(Clone, Copy, Debug, Default, PartialEq)]
1227pub enum TxBufferTrackingState {
1228 /// The send buffer is in a good state
1229 #[default]
1230 Ok,
1231 /// The send buffer is in an inconsistent state, which could lead to
1232 /// connection stalls or excess buffering due to bugs we haven't
1233 /// tracked down yet.
1234 Inconsistent,
1235}
1236
1237/// A QUIC connection.
1238pub struct Connection<F = DefaultBufFactory>
1239where
1240 F: BufFactory,
1241{
1242 /// QUIC wire version used for the connection.
1243 version: u32,
1244
1245 /// Connection Identifiers.
1246 ids: cid::ConnectionIdentifiers,
1247
1248 /// Unique opaque ID for the connection that can be used for logging.
1249 trace_id: String,
1250
1251 /// Packet number spaces.
1252 pkt_num_spaces: [packet::PktNumSpace; packet::Epoch::count()],
1253
1254 /// The crypto context.
1255 crypto_ctx: [packet::CryptoContext; packet::Epoch::count()],
1256
1257 /// Next packet number.
1258 next_pkt_num: u64,
1259
1260 // TODO
1261 // combine with `next_pkt_num`
1262 /// Track the packet skip context
1263 pkt_num_manager: packet::PktNumManager,
1264
1265 /// Peer's transport parameters.
1266 peer_transport_params: TransportParams,
1267
1268 /// If tracking unknown transport parameters from a peer, how much space to
1269 /// use in bytes.
1270 peer_transport_params_track_unknown: Option<usize>,
1271
1272 /// Local transport parameters.
1273 local_transport_params: TransportParams,
1274
1275 /// TLS handshake state.
1276 handshake: tls::Handshake,
1277
1278 /// Serialized TLS session buffer.
1279 ///
1280 /// This field is populated when a new session ticket is processed on the
1281 /// client. On the server this is empty.
1282 session: Option<Vec<u8>>,
1283
1284 /// The configuration for recovery.
1285 recovery_config: recovery::RecoveryConfig,
1286
1287 /// The path manager.
1288 paths: path::PathMap,
1289
1290 /// PATH_CHALLENGE receive queue max length.
1291 path_challenge_recv_max_queue_len: usize,
1292
1293 /// Total number of received PATH_CHALLENGE frames.
1294 path_challenge_rx_count: u64,
1295
1296 /// List of supported application protocols.
1297 application_protos: Vec<Vec<u8>>,
1298
1299 /// Total number of received packets.
1300 recv_count: usize,
1301
1302 /// Total number of sent packets.
1303 sent_count: usize,
1304
1305 /// Total number of lost packets.
1306 lost_count: usize,
1307
1308 /// Total number of lost packets that were later acked.
1309 spurious_lost_count: usize,
1310
1311 /// Total number of packets sent with data retransmitted.
1312 retrans_count: usize,
1313
1314 /// Total number of sent DATAGRAM frames.
1315 dgram_sent_count: usize,
1316
1317 /// Total number of received DATAGRAM frames.
1318 dgram_recv_count: usize,
1319
1320 /// Total number of bytes received from the peer.
1321 rx_data: u64,
1322
1323 /// Receiver flow controller.
1324 flow_control: flowcontrol::FlowControl,
1325
1326 /// Whether we send MAX_DATA frame.
1327 almost_full: bool,
1328
1329 /// Number of stream data bytes that can be buffered.
1330 tx_cap: usize,
1331
1332 /// The send capacity factor.
1333 tx_cap_factor: f64,
1334
1335 /// Number of bytes buffered in the send buffer.
1336 tx_buffered: usize,
1337
1338 /// Tracks the health of tx_buffered.
1339 tx_buffered_state: TxBufferTrackingState,
1340
1341 /// Total number of bytes sent to the peer.
1342 tx_data: u64,
1343
1344 /// Peer's flow control limit for the connection.
1345 max_tx_data: u64,
1346
1347 /// Last tx_data before running a full send() loop.
1348 last_tx_data: u64,
1349
1350 /// Total number of bytes retransmitted over the connection.
1351 /// This counts only STREAM and CRYPTO data.
1352 stream_retrans_bytes: u64,
1353
1354 /// Total number of bytes sent over the connection.
1355 sent_bytes: u64,
1356
1357 /// Total number of bytes received over the connection.
1358 recv_bytes: u64,
1359
1360 /// Total number of bytes sent acked over the connection.
1361 acked_bytes: u64,
1362
1363 /// Total number of bytes sent lost over the connection.
1364 lost_bytes: u64,
1365
1366 /// Streams map, indexed by stream ID.
1367 streams: stream::StreamMap<F>,
1368
1369 /// Peer's original destination connection ID. Used by the client to
1370 /// validate the server's transport parameter.
1371 odcid: Option<ConnectionId<'static>>,
1372
1373 /// Peer's retry source connection ID. Used by the client during stateless
1374 /// retry to validate the server's transport parameter.
1375 rscid: Option<ConnectionId<'static>>,
1376
1377 /// Received address verification token.
1378 token: Option<Vec<u8>>,
1379
1380 /// Error code and reason to be sent to the peer in a CONNECTION_CLOSE
1381 /// frame.
1382 local_error: Option<ConnectionError>,
1383
1384 /// Error code and reason received from the peer in a CONNECTION_CLOSE
1385 /// frame.
1386 peer_error: Option<ConnectionError>,
1387
1388 /// The connection-level limit at which send blocking occurred.
1389 blocked_limit: Option<u64>,
1390
1391 /// Idle timeout expiration time.
1392 idle_timer: Option<Instant>,
1393
1394 /// Draining timeout expiration time.
1395 draining_timer: Option<Instant>,
1396
1397 /// List of raw packets that were received before they could be decrypted.
1398 undecryptable_pkts: VecDeque<(Vec<u8>, RecvInfo)>,
1399
1400 /// The negotiated ALPN protocol.
1401 alpn: Vec<u8>,
1402
1403 /// Whether this is a server-side connection.
1404 is_server: bool,
1405
1406 /// Whether the initial secrets have been derived.
1407 derived_initial_secrets: bool,
1408
1409 /// Whether a version negotiation packet has already been received. Only
1410 /// relevant for client connections.
1411 did_version_negotiation: bool,
1412
1413 /// Whether stateless retry has been performed.
1414 did_retry: bool,
1415
1416 /// Whether the peer already updated its connection ID.
1417 got_peer_conn_id: bool,
1418
1419 /// Whether the peer verified our initial address.
1420 peer_verified_initial_address: bool,
1421
1422 /// Whether the peer's transport parameters were parsed.
1423 parsed_peer_transport_params: bool,
1424
1425 /// Whether the connection handshake has been completed.
1426 handshake_completed: bool,
1427
1428 /// Whether the HANDSHAKE_DONE frame has been sent.
1429 handshake_done_sent: bool,
1430
1431 /// Whether the HANDSHAKE_DONE frame has been acked.
1432 handshake_done_acked: bool,
1433
1434 /// Whether the connection handshake has been confirmed.
1435 handshake_confirmed: bool,
1436
1437 /// Key phase bit used for outgoing protected packets.
1438 key_phase: bool,
1439
1440 /// Whether an ack-eliciting packet has been sent since last receiving a
1441 /// packet.
1442 ack_eliciting_sent: bool,
1443
1444 /// Whether the connection is closed.
1445 closed: bool,
1446
1447 /// Whether the connection was timed out.
1448 timed_out: bool,
1449
1450 /// Whether to send GREASE.
1451 grease: bool,
1452
1453 /// TLS keylog writer.
1454 keylog: Option<Box<dyn std::io::Write + Send + Sync>>,
1455
1456 #[cfg(feature = "qlog")]
1457 qlog: QlogInfo,
1458
1459 /// DATAGRAM queues.
1460 dgram_recv_queue: dgram::DatagramQueue,
1461 dgram_send_queue: dgram::DatagramQueue,
1462
1463 /// Whether to emit DATAGRAM frames in the next packet.
1464 emit_dgram: bool,
1465
1466 /// Whether the connection should prevent from reusing destination
1467 /// Connection IDs when the peer migrates.
1468 disable_dcid_reuse: bool,
1469
1470 /// The number of streams reset by local.
1471 reset_stream_local_count: u64,
1472
1473 /// The number of streams stopped by local.
1474 stopped_stream_local_count: u64,
1475
1476 /// The number of streams reset by remote.
1477 reset_stream_remote_count: u64,
1478
1479 /// The number of streams stopped by remote.
1480 stopped_stream_remote_count: u64,
1481
1482 /// The number of DATA_BLOCKED frames sent due to hitting the connection
1483 /// flow control limit.
1484 data_blocked_sent_count: u64,
1485
1486 /// The number of STREAM_DATA_BLOCKED frames sent due to a stream hitting
1487 /// the stream flow control limit.
1488 stream_data_blocked_sent_count: u64,
1489
1490 /// The number of DATA_BLOCKED frames received from the remote endpoint.
1491 data_blocked_recv_count: u64,
1492
1493 /// The number of STREAM_DATA_BLOCKED frames received from the remote
1494 /// endpoint.
1495 stream_data_blocked_recv_count: u64,
1496
1497 /// The anti-amplification limit factor.
1498 max_amplification_factor: usize,
1499}
1500
1501/// Creates a new server-side connection.
1502///
1503/// The `scid` parameter represents the server's source connection ID, while
1504/// the optional `odcid` parameter represents the original destination ID the
1505/// client sent before a Retry packet (this is only required when using the
1506/// [`retry()`] function). See also the [`accept_with_retry()`] function for
1507/// more advanced retry cases.
1508///
1509/// [`retry()`]: fn.retry.html
1510///
1511/// ## Examples:
1512///
1513/// ```no_run
1514/// # let mut config = quiche::Config::new(0xbabababa)?;
1515/// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
1516/// # let local = "127.0.0.1:0".parse().unwrap();
1517/// # let peer = "127.0.0.1:1234".parse().unwrap();
1518/// let conn = quiche::accept(&scid, None, local, peer, &mut config)?;
1519/// # Ok::<(), quiche::Error>(())
1520/// ```
1521#[inline(always)]
1522pub fn accept(
1523 scid: &ConnectionId, odcid: Option<&ConnectionId>, local: SocketAddr,
1524 peer: SocketAddr, config: &mut Config,
1525) -> Result<Connection> {
1526 accept_with_buf_factory(scid, odcid, local, peer, config)
1527}
1528
1529/// Creates a new server-side connection, with a custom buffer generation
1530/// method.
1531///
1532/// The buffers generated can be anything that can be drereferenced as a byte
1533/// slice. See [`accept`] and [`BufFactory`] for more info.
1534#[inline]
1535pub fn accept_with_buf_factory<F: BufFactory>(
1536 scid: &ConnectionId, odcid: Option<&ConnectionId>, local: SocketAddr,
1537 peer: SocketAddr, config: &mut Config,
1538) -> Result<Connection<F>> {
1539 // For connections with `odcid` set, we historically used `retry_source_cid =
1540 // scid`. Keep this behavior to preserve backwards compatibility.
1541 // `accept_with_retry` allows the SCIDs to be specified separately.
1542 let retry_cids = odcid.map(|odcid| RetryConnectionIds {
1543 original_destination_cid: odcid,
1544 retry_source_cid: scid,
1545 });
1546
1547 Connection::new(scid, retry_cids, local, peer, config, true)
1548}
1549
1550/// A wrapper for connection IDs used in [`accept_with_retry`].
1551pub struct RetryConnectionIds<'a> {
1552 /// The DCID of the first Initial packet received by the server, which
1553 /// triggered the Retry packet.
1554 pub original_destination_cid: &'a ConnectionId<'a>,
1555 /// The SCID of the Retry packet sent by the server. This can be different
1556 /// from the new connection's SCID.
1557 pub retry_source_cid: &'a ConnectionId<'a>,
1558}
1559
1560/// Creates a new server-side connection after the client responded to a Retry
1561/// packet.
1562///
1563/// To generate a Retry packet in the first place, use the [`retry()`] function.
1564///
1565/// The `scid` parameter represents the server's source connection ID, which can
1566/// be freshly generated after the application has successfully verified the
1567/// Retry. `retry_cids` is used to tie the new connection to the Initial + Retry
1568/// exchange that preceded the connection's creation.
1569///
1570/// The DCID of the client's Initial packet is inherently untrusted data. It is
1571/// safe to use the DCID in the `retry_source_cid` field of the
1572/// `RetryConnectionIds` provided to this function. However, using the Initial's
1573/// DCID for the `scid` parameter carries risks. Applications are advised to
1574/// implement their own DCID validation steps before using the DCID in that
1575/// manner.
1576#[inline]
1577pub fn accept_with_retry<F: BufFactory>(
1578 scid: &ConnectionId, retry_cids: RetryConnectionIds, local: SocketAddr,
1579 peer: SocketAddr, config: &mut Config,
1580) -> Result<Connection<F>> {
1581 Connection::new(scid, Some(retry_cids), local, peer, config, true)
1582}
1583
1584/// Creates a new client-side connection.
1585///
1586/// The `scid` parameter is used as the connection's source connection ID,
1587/// while the optional `server_name` parameter is used to verify the peer's
1588/// certificate.
1589///
1590/// ## Examples:
1591///
1592/// ```no_run
1593/// # let mut config = quiche::Config::new(0xbabababa)?;
1594/// # let server_name = "quic.tech";
1595/// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
1596/// # let local = "127.0.0.1:4321".parse().unwrap();
1597/// # let peer = "127.0.0.1:1234".parse().unwrap();
1598/// let conn =
1599/// quiche::connect(Some(&server_name), &scid, local, peer, &mut config)?;
1600/// # Ok::<(), quiche::Error>(())
1601/// ```
1602#[inline]
1603pub fn connect(
1604 server_name: Option<&str>, scid: &ConnectionId, local: SocketAddr,
1605 peer: SocketAddr, config: &mut Config,
1606) -> Result<Connection> {
1607 let mut conn = Connection::new(scid, None, local, peer, config, false)?;
1608
1609 if let Some(server_name) = server_name {
1610 conn.handshake.set_host_name(server_name)?;
1611 }
1612
1613 Ok(conn)
1614}
1615
1616/// Creates a new client-side connection, with a custom buffer generation
1617/// method.
1618///
1619/// The buffers generated can be anything that can be drereferenced as a byte
1620/// slice. See [`connect`] and [`BufFactory`] for more info.
1621#[inline]
1622pub fn connect_with_buffer_factory<F: BufFactory>(
1623 server_name: Option<&str>, scid: &ConnectionId, local: SocketAddr,
1624 peer: SocketAddr, config: &mut Config,
1625) -> Result<Connection<F>> {
1626 let mut conn = Connection::new(scid, None, local, peer, config, false)?;
1627
1628 if let Some(server_name) = server_name {
1629 conn.handshake.set_host_name(server_name)?;
1630 }
1631
1632 Ok(conn)
1633}
1634
1635/// Writes a version negotiation packet.
1636///
1637/// The `scid` and `dcid` parameters are the source connection ID and the
1638/// destination connection ID extracted from the received client's Initial
1639/// packet that advertises an unsupported version.
1640///
1641/// ## Examples:
1642///
1643/// ```no_run
1644/// # let mut buf = [0; 512];
1645/// # let mut out = [0; 512];
1646/// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
1647/// let (len, src) = socket.recv_from(&mut buf).unwrap();
1648///
1649/// let hdr =
1650/// quiche::Header::from_slice(&mut buf[..len], quiche::MAX_CONN_ID_LEN)?;
1651///
1652/// if hdr.version != quiche::PROTOCOL_VERSION {
1653/// let len = quiche::negotiate_version(&hdr.scid, &hdr.dcid, &mut out)?;
1654/// socket.send_to(&out[..len], &src).unwrap();
1655/// }
1656/// # Ok::<(), quiche::Error>(())
1657/// ```
1658#[inline]
1659pub fn negotiate_version(
1660 scid: &ConnectionId, dcid: &ConnectionId, out: &mut [u8],
1661) -> Result<usize> {
1662 packet::negotiate_version(scid, dcid, out)
1663}
1664
1665/// Writes a stateless retry packet.
1666///
1667/// The `scid` and `dcid` parameters are the source connection ID and the
1668/// destination connection ID extracted from the received client's Initial
1669/// packet, while `new_scid` is the server's new source connection ID and
1670/// `token` is the address validation token the client needs to echo back.
1671///
1672/// The application is responsible for generating the address validation
1673/// token to be sent to the client, and verifying tokens sent back by the
1674/// client. The generated token should include the `dcid` parameter, such
1675/// that it can be later extracted from the token and passed to the
1676/// [`accept()`] function as its `odcid` parameter.
1677///
1678/// [`accept()`]: fn.accept.html
1679///
1680/// ## Examples:
1681///
1682/// ```no_run
1683/// # let mut config = quiche::Config::new(0xbabababa)?;
1684/// # let mut buf = [0; 512];
1685/// # let mut out = [0; 512];
1686/// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
1687/// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
1688/// # let local = socket.local_addr().unwrap();
1689/// # fn mint_token(hdr: &quiche::Header, src: &std::net::SocketAddr) -> Vec<u8> {
1690/// # vec![]
1691/// # }
1692/// # fn validate_token<'a>(src: &std::net::SocketAddr, token: &'a [u8]) -> Option<quiche::ConnectionId<'a>> {
1693/// # None
1694/// # }
1695/// let (len, peer) = socket.recv_from(&mut buf).unwrap();
1696///
1697/// let hdr = quiche::Header::from_slice(&mut buf[..len], quiche::MAX_CONN_ID_LEN)?;
1698///
1699/// let token = hdr.token.as_ref().unwrap();
1700///
1701/// // No token sent by client, create a new one.
1702/// if token.is_empty() {
1703/// let new_token = mint_token(&hdr, &peer);
1704///
1705/// let len = quiche::retry(
1706/// &hdr.scid, &hdr.dcid, &scid, &new_token, hdr.version, &mut out,
1707/// )?;
1708///
1709/// socket.send_to(&out[..len], &peer).unwrap();
1710/// return Ok(());
1711/// }
1712///
1713/// // Client sent token, validate it.
1714/// let odcid = validate_token(&peer, token);
1715///
1716/// if odcid.is_none() {
1717/// // Invalid address validation token.
1718/// return Ok(());
1719/// }
1720///
1721/// let conn = quiche::accept(&scid, odcid.as_ref(), local, peer, &mut config)?;
1722/// # Ok::<(), quiche::Error>(())
1723/// ```
1724#[inline]
1725pub fn retry(
1726 scid: &ConnectionId, dcid: &ConnectionId, new_scid: &ConnectionId,
1727 token: &[u8], version: u32, out: &mut [u8],
1728) -> Result<usize> {
1729 packet::retry(scid, dcid, new_scid, token, version, out)
1730}
1731
1732/// Returns true if the given protocol version is supported.
1733#[inline]
1734pub fn version_is_supported(version: u32) -> bool {
1735 matches!(version, PROTOCOL_VERSION_V1)
1736}
1737
1738/// Pushes a frame to the output packet if there is enough space.
1739///
1740/// Returns `true` on success, `false` otherwise. In case of failure it means
1741/// there is no room to add the frame in the packet. You may retry to add the
1742/// frame later.
1743macro_rules! push_frame_to_pkt {
1744 ($out:expr, $frames:expr, $frame:expr, $left:expr) => {{
1745 if $frame.wire_len() <= $left {
1746 $left -= $frame.wire_len();
1747
1748 $frame.to_bytes(&mut $out)?;
1749
1750 $frames.push($frame);
1751
1752 true
1753 } else {
1754 false
1755 }
1756 }};
1757}
1758
1759/// Executes the provided body if the qlog feature is enabled, quiche has been
1760/// configured with a log writer, the event's importance is within the
1761/// configured level.
1762macro_rules! qlog_with_type {
1763 ($ty:expr, $qlog:expr, $qlog_streamer_ref:ident, $body:block) => {{
1764 #[cfg(feature = "qlog")]
1765 {
1766 if EventImportance::from($ty).is_contained_in(&$qlog.level) {
1767 if let Some($qlog_streamer_ref) = &mut $qlog.streamer {
1768 $body
1769 }
1770 }
1771 }
1772 }};
1773}
1774
1775#[cfg(feature = "qlog")]
1776const QLOG_PARAMS_SET: EventType =
1777 EventType::TransportEventType(TransportEventType::ParametersSet);
1778
1779#[cfg(feature = "qlog")]
1780const QLOG_PACKET_RX: EventType =
1781 EventType::TransportEventType(TransportEventType::PacketReceived);
1782
1783#[cfg(feature = "qlog")]
1784const QLOG_PACKET_TX: EventType =
1785 EventType::TransportEventType(TransportEventType::PacketSent);
1786
1787#[cfg(feature = "qlog")]
1788const QLOG_DATA_MV: EventType =
1789 EventType::TransportEventType(TransportEventType::DataMoved);
1790
1791#[cfg(feature = "qlog")]
1792const QLOG_METRICS: EventType =
1793 EventType::RecoveryEventType(RecoveryEventType::MetricsUpdated);
1794
1795#[cfg(feature = "qlog")]
1796const QLOG_CONNECTION_CLOSED: EventType =
1797 EventType::ConnectivityEventType(ConnectivityEventType::ConnectionClosed);
1798
1799#[cfg(feature = "qlog")]
1800struct QlogInfo {
1801 streamer: Option<qlog::streamer::QlogStreamer>,
1802 logged_peer_params: bool,
1803 level: EventImportance,
1804}
1805
1806#[cfg(feature = "qlog")]
1807impl Default for QlogInfo {
1808 fn default() -> Self {
1809 QlogInfo {
1810 streamer: None,
1811 logged_peer_params: false,
1812 level: EventImportance::Base,
1813 }
1814 }
1815}
1816
1817impl<F: BufFactory> Connection<F> {
1818 fn new(
1819 scid: &ConnectionId, retry_cids: Option<RetryConnectionIds>,
1820 local: SocketAddr, peer: SocketAddr, config: &mut Config,
1821 is_server: bool,
1822 ) -> Result<Connection<F>> {
1823 let tls = config.tls_ctx.new_handshake()?;
1824 Connection::with_tls(
1825 scid, retry_cids, local, peer, config, tls, is_server,
1826 )
1827 }
1828
1829 fn with_tls(
1830 scid: &ConnectionId, retry_cids: Option<RetryConnectionIds>,
1831 local: SocketAddr, peer: SocketAddr, config: &Config,
1832 tls: tls::Handshake, is_server: bool,
1833 ) -> Result<Connection<F>> {
1834 let max_rx_data = config.local_transport_params.initial_max_data;
1835
1836 let scid_as_hex: Vec<String> =
1837 scid.iter().map(|b| format!("{b:02x}")).collect();
1838
1839 let reset_token = if is_server {
1840 config.local_transport_params.stateless_reset_token
1841 } else {
1842 None
1843 };
1844
1845 let recovery_config = recovery::RecoveryConfig::from_config(config);
1846
1847 let mut path = path::Path::new(
1848 local,
1849 peer,
1850 &recovery_config,
1851 config.path_challenge_recv_max_queue_len,
1852 true,
1853 Some(config),
1854 );
1855
1856 // If we sent a Retry assume the peer's address is verified.
1857 path.verified_peer_address = retry_cids.is_some();
1858 // Assume clients validate the server's address implicitly.
1859 path.peer_verified_local_address = is_server;
1860
1861 // Do not allocate more than the number of active CIDs.
1862 let paths = path::PathMap::new(
1863 path,
1864 config.local_transport_params.active_conn_id_limit as usize,
1865 is_server,
1866 );
1867
1868 let active_path_id = paths.get_active_path_id()?;
1869
1870 let ids = cid::ConnectionIdentifiers::new(
1871 config.local_transport_params.active_conn_id_limit as usize,
1872 scid,
1873 active_path_id,
1874 reset_token,
1875 );
1876
1877 let mut conn = Connection {
1878 version: config.version,
1879
1880 ids,
1881
1882 trace_id: scid_as_hex.join(""),
1883
1884 pkt_num_spaces: [
1885 packet::PktNumSpace::new(),
1886 packet::PktNumSpace::new(),
1887 packet::PktNumSpace::new(),
1888 ],
1889
1890 crypto_ctx: [
1891 packet::CryptoContext::new(),
1892 packet::CryptoContext::new(),
1893 packet::CryptoContext::new(),
1894 ],
1895
1896 next_pkt_num: 0,
1897
1898 pkt_num_manager: packet::PktNumManager::new(),
1899
1900 peer_transport_params: TransportParams::default(),
1901
1902 peer_transport_params_track_unknown: config
1903 .track_unknown_transport_params,
1904
1905 local_transport_params: config.local_transport_params.clone(),
1906
1907 handshake: tls,
1908
1909 session: None,
1910
1911 recovery_config,
1912
1913 paths,
1914 path_challenge_recv_max_queue_len: config
1915 .path_challenge_recv_max_queue_len,
1916 path_challenge_rx_count: 0,
1917
1918 application_protos: config.application_protos.clone(),
1919
1920 recv_count: 0,
1921 sent_count: 0,
1922 lost_count: 0,
1923 spurious_lost_count: 0,
1924 retrans_count: 0,
1925 dgram_sent_count: 0,
1926 dgram_recv_count: 0,
1927 sent_bytes: 0,
1928 recv_bytes: 0,
1929 acked_bytes: 0,
1930 lost_bytes: 0,
1931
1932 rx_data: 0,
1933 flow_control: flowcontrol::FlowControl::new(
1934 max_rx_data,
1935 cmp::min(max_rx_data / 2 * 3, DEFAULT_CONNECTION_WINDOW),
1936 config.max_connection_window,
1937 ),
1938 almost_full: false,
1939
1940 tx_cap: 0,
1941 tx_cap_factor: config.tx_cap_factor,
1942
1943 tx_buffered: 0,
1944 tx_buffered_state: TxBufferTrackingState::Ok,
1945
1946 tx_data: 0,
1947 max_tx_data: 0,
1948 last_tx_data: 0,
1949
1950 stream_retrans_bytes: 0,
1951
1952 streams: stream::StreamMap::new(
1953 config.local_transport_params.initial_max_streams_bidi,
1954 config.local_transport_params.initial_max_streams_uni,
1955 config.max_stream_window,
1956 ),
1957
1958 odcid: None,
1959
1960 rscid: None,
1961
1962 token: None,
1963
1964 local_error: None,
1965
1966 peer_error: None,
1967
1968 blocked_limit: None,
1969
1970 idle_timer: None,
1971
1972 draining_timer: None,
1973
1974 undecryptable_pkts: VecDeque::new(),
1975
1976 alpn: Vec::new(),
1977
1978 is_server,
1979
1980 derived_initial_secrets: false,
1981
1982 did_version_negotiation: false,
1983
1984 did_retry: false,
1985
1986 got_peer_conn_id: false,
1987
1988 // Assume clients validate the server's address implicitly.
1989 peer_verified_initial_address: is_server,
1990
1991 parsed_peer_transport_params: false,
1992
1993 handshake_completed: false,
1994
1995 handshake_done_sent: false,
1996 handshake_done_acked: false,
1997
1998 handshake_confirmed: false,
1999
2000 key_phase: false,
2001
2002 ack_eliciting_sent: false,
2003
2004 closed: false,
2005
2006 timed_out: false,
2007
2008 grease: config.grease,
2009
2010 keylog: None,
2011
2012 #[cfg(feature = "qlog")]
2013 qlog: Default::default(),
2014
2015 dgram_recv_queue: dgram::DatagramQueue::new(
2016 config.dgram_recv_max_queue_len,
2017 ),
2018
2019 dgram_send_queue: dgram::DatagramQueue::new(
2020 config.dgram_send_max_queue_len,
2021 ),
2022
2023 emit_dgram: true,
2024
2025 disable_dcid_reuse: config.disable_dcid_reuse,
2026
2027 reset_stream_local_count: 0,
2028 stopped_stream_local_count: 0,
2029 reset_stream_remote_count: 0,
2030 stopped_stream_remote_count: 0,
2031
2032 data_blocked_sent_count: 0,
2033 stream_data_blocked_sent_count: 0,
2034 data_blocked_recv_count: 0,
2035 stream_data_blocked_recv_count: 0,
2036
2037 max_amplification_factor: config.max_amplification_factor,
2038 };
2039
2040 if let Some(retry_cids) = retry_cids {
2041 conn.local_transport_params
2042 .original_destination_connection_id =
2043 Some(retry_cids.original_destination_cid.to_vec().into());
2044
2045 conn.local_transport_params.retry_source_connection_id =
2046 Some(retry_cids.retry_source_cid.to_vec().into());
2047
2048 conn.did_retry = true;
2049 }
2050
2051 conn.local_transport_params.initial_source_connection_id =
2052 Some(conn.ids.get_scid(0)?.cid.to_vec().into());
2053
2054 conn.handshake.init(is_server)?;
2055
2056 conn.handshake
2057 .use_legacy_codepoint(config.version != PROTOCOL_VERSION_V1);
2058
2059 conn.encode_transport_params()?;
2060
2061 // Derive initial secrets for the client. We can do this here because
2062 // we already generated the random destination connection ID.
2063 if !is_server {
2064 let mut dcid = [0; 16];
2065 rand::rand_bytes(&mut dcid[..]);
2066
2067 let (aead_open, aead_seal) = crypto::derive_initial_key_material(
2068 &dcid,
2069 conn.version,
2070 conn.is_server,
2071 false,
2072 )?;
2073
2074 let reset_token = conn.peer_transport_params.stateless_reset_token;
2075 conn.set_initial_dcid(
2076 dcid.to_vec().into(),
2077 reset_token,
2078 active_path_id,
2079 )?;
2080
2081 conn.crypto_ctx[packet::Epoch::Initial].crypto_open = Some(aead_open);
2082 conn.crypto_ctx[packet::Epoch::Initial].crypto_seal = Some(aead_seal);
2083
2084 conn.derived_initial_secrets = true;
2085 }
2086
2087 Ok(conn)
2088 }
2089
2090 /// Sets keylog output to the designated [`Writer`].
2091 ///
2092 /// This needs to be called as soon as the connection is created, to avoid
2093 /// missing some early logs.
2094 ///
2095 /// [`Writer`]: https://doc.rust-lang.org/std/io/trait.Write.html
2096 #[inline]
2097 pub fn set_keylog(&mut self, writer: Box<dyn std::io::Write + Send + Sync>) {
2098 self.keylog = Some(writer);
2099 }
2100
2101 /// Sets qlog output to the designated [`Writer`].
2102 ///
2103 /// Only events included in `QlogLevel::Base` are written. The serialization
2104 /// format is JSON-SEQ.
2105 ///
2106 /// This needs to be called as soon as the connection is created, to avoid
2107 /// missing some early logs.
2108 ///
2109 /// [`Writer`]: https://doc.rust-lang.org/std/io/trait.Write.html
2110 #[cfg(feature = "qlog")]
2111 #[cfg_attr(docsrs, doc(cfg(feature = "qlog")))]
2112 pub fn set_qlog(
2113 &mut self, writer: Box<dyn std::io::Write + Send + Sync>, title: String,
2114 description: String,
2115 ) {
2116 self.set_qlog_with_level(writer, title, description, QlogLevel::Base)
2117 }
2118
2119 /// Sets qlog output to the designated [`Writer`].
2120 ///
2121 /// Only qlog events included in the specified `QlogLevel` are written. The
2122 /// serialization format is JSON-SEQ.
2123 ///
2124 /// This needs to be called as soon as the connection is created, to avoid
2125 /// missing some early logs.
2126 ///
2127 /// [`Writer`]: https://doc.rust-lang.org/std/io/trait.Write.html
2128 #[cfg(feature = "qlog")]
2129 #[cfg_attr(docsrs, doc(cfg(feature = "qlog")))]
2130 pub fn set_qlog_with_level(
2131 &mut self, writer: Box<dyn std::io::Write + Send + Sync>, title: String,
2132 description: String, qlog_level: QlogLevel,
2133 ) {
2134 let vp = if self.is_server {
2135 qlog::VantagePointType::Server
2136 } else {
2137 qlog::VantagePointType::Client
2138 };
2139
2140 let level = match qlog_level {
2141 QlogLevel::Core => EventImportance::Core,
2142
2143 QlogLevel::Base => EventImportance::Base,
2144
2145 QlogLevel::Extra => EventImportance::Extra,
2146 };
2147
2148 self.qlog.level = level;
2149
2150 let trace = qlog::TraceSeq::new(
2151 qlog::VantagePoint {
2152 name: None,
2153 ty: vp,
2154 flow: None,
2155 },
2156 Some(title.to_string()),
2157 Some(description.to_string()),
2158 Some(qlog::Configuration {
2159 time_offset: Some(0.0),
2160 original_uris: None,
2161 }),
2162 None,
2163 );
2164
2165 let mut streamer = qlog::streamer::QlogStreamer::new(
2166 qlog::QLOG_VERSION.to_string(),
2167 Some(title),
2168 Some(description),
2169 None,
2170 Instant::now(),
2171 trace,
2172 self.qlog.level,
2173 writer,
2174 );
2175
2176 streamer.start_log().ok();
2177
2178 let ev_data = self
2179 .local_transport_params
2180 .to_qlog(TransportOwner::Local, self.handshake.cipher());
2181
2182 // This event occurs very early, so just mark the relative time as 0.0.
2183 streamer.add_event(Event::with_time(0.0, ev_data)).ok();
2184
2185 self.qlog.streamer = Some(streamer);
2186 }
2187
2188 /// Returns a mutable reference to the QlogStreamer, if it exists.
2189 #[cfg(feature = "qlog")]
2190 #[cfg_attr(docsrs, doc(cfg(feature = "qlog")))]
2191 pub fn qlog_streamer(&mut self) -> Option<&mut qlog::streamer::QlogStreamer> {
2192 self.qlog.streamer.as_mut()
2193 }
2194
2195 /// Configures the given session for resumption.
2196 ///
2197 /// On the client, this can be used to offer the given serialized session,
2198 /// as returned by [`session()`], for resumption.
2199 ///
2200 /// This must only be called immediately after creating a connection, that
2201 /// is, before any packet is sent or received.
2202 ///
2203 /// [`session()`]: struct.Connection.html#method.session
2204 #[inline]
2205 pub fn set_session(&mut self, session: &[u8]) -> Result<()> {
2206 let mut b = octets::Octets::with_slice(session);
2207
2208 let session_len = b.get_u64()? as usize;
2209 let session_bytes = b.get_bytes(session_len)?;
2210
2211 self.handshake.set_session(session_bytes.as_ref())?;
2212
2213 let raw_params_len = b.get_u64()? as usize;
2214 let raw_params_bytes = b.get_bytes(raw_params_len)?;
2215
2216 let peer_params = TransportParams::decode(
2217 raw_params_bytes.as_ref(),
2218 self.is_server,
2219 self.peer_transport_params_track_unknown,
2220 )?;
2221
2222 self.process_peer_transport_params(peer_params)?;
2223
2224 Ok(())
2225 }
2226
2227 /// Sets the `max_idle_timeout` transport parameter, in milliseconds.
2228 ///
2229 /// This must only be called immediately after creating a connection, that
2230 /// is, before any packet is sent or received.
2231 ///
2232 /// The default value is infinite, that is, no timeout is used unless
2233 /// already configured when creating the connection.
2234 pub fn set_max_idle_timeout(&mut self, v: u64) -> Result<()> {
2235 self.local_transport_params.max_idle_timeout =
2236 cmp::min(v, octets::MAX_VAR_INT);
2237
2238 self.encode_transport_params()
2239 }
2240
2241 /// Sets the congestion control algorithm used.
2242 ///
2243 /// This function can only be called inside one of BoringSSL's handshake
2244 /// callbacks, before any packet has been sent. Calling this function any
2245 /// other time will have no effect.
2246 ///
2247 /// See [`Config::set_cc_algorithm()`].
2248 ///
2249 /// [`Config::set_cc_algorithm()`]: struct.Config.html#method.set_cc_algorithm
2250 #[cfg(feature = "boringssl-boring-crate")]
2251 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
2252 pub fn set_cc_algorithm_in_handshake(
2253 ssl: &mut boring::ssl::SslRef, algo: CongestionControlAlgorithm,
2254 ) -> Result<()> {
2255 let ex_data = tls::ExData::from_ssl_ref(ssl).ok_or(Error::TlsFail)?;
2256
2257 ex_data.recovery_config.cc_algorithm = algo;
2258
2259 Ok(())
2260 }
2261
2262 /// Sets custom BBR settings.
2263 ///
2264 /// This API is experimental and will be removed in the future.
2265 ///
2266 /// Currently this only applies if cc_algorithm is
2267 /// `CongestionControlAlgorithm::Bbr2Gcongestion` is set.
2268 ///
2269 /// This function can only be called inside one of BoringSSL's handshake
2270 /// callbacks, before any packet has been sent. Calling this function any
2271 /// other time will have no effect.
2272 ///
2273 /// See [`Config::set_custom_bbr_settings()`].
2274 ///
2275 /// [`Config::set_custom_bbr_settings()`]: struct.Config.html#method.set_custom_bbr_settings
2276 #[cfg(all(feature = "boringssl-boring-crate", feature = "internal"))]
2277 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
2278 #[doc(hidden)]
2279 pub fn set_custom_bbr_settings_in_handshake(
2280 ssl: &mut boring::ssl::SslRef, custom_bbr_params: BbrParams,
2281 ) -> Result<()> {
2282 let ex_data = tls::ExData::from_ssl_ref(ssl).ok_or(Error::TlsFail)?;
2283
2284 ex_data.recovery_config.custom_bbr_params = Some(custom_bbr_params);
2285
2286 Ok(())
2287 }
2288
2289 /// Sets the congestion control algorithm used by string.
2290 ///
2291 /// This function can only be called inside one of BoringSSL's handshake
2292 /// callbacks, before any packet has been sent. Calling this function any
2293 /// other time will have no effect.
2294 ///
2295 /// See [`Config::set_cc_algorithm_name()`].
2296 ///
2297 /// [`Config::set_cc_algorithm_name()`]: struct.Config.html#method.set_cc_algorithm_name
2298 #[cfg(feature = "boringssl-boring-crate")]
2299 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
2300 pub fn set_cc_algorithm_name_in_handshake(
2301 ssl: &mut boring::ssl::SslRef, name: &str,
2302 ) -> Result<()> {
2303 let cc_algo = CongestionControlAlgorithm::from_str(name)?;
2304 Self::set_cc_algorithm_in_handshake(ssl, cc_algo)
2305 }
2306
2307 /// Sets initial congestion window size in terms of packet count.
2308 ///
2309 /// This function can only be called inside one of BoringSSL's handshake
2310 /// callbacks, before any packet has been sent. Calling this function any
2311 /// other time will have no effect.
2312 ///
2313 /// See [`Config::set_initial_congestion_window_packets()`].
2314 ///
2315 /// [`Config::set_initial_congestion_window_packets()`]: struct.Config.html#method.set_initial_congestion_window_packets
2316 #[cfg(feature = "boringssl-boring-crate")]
2317 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
2318 pub fn set_initial_congestion_window_packets_in_handshake(
2319 ssl: &mut boring::ssl::SslRef, packets: usize,
2320 ) -> Result<()> {
2321 let ex_data = tls::ExData::from_ssl_ref(ssl).ok_or(Error::TlsFail)?;
2322
2323 ex_data.recovery_config.initial_congestion_window_packets = packets;
2324
2325 Ok(())
2326 }
2327
2328 /// Configure whether to enable relaxed loss detection on spurious loss.
2329 ///
2330 /// This function can only be called inside one of BoringSSL's handshake
2331 /// callbacks, before any packet has been sent. Calling this function any
2332 /// other time will have no effect.
2333 ///
2334 /// See [`Config::set_enable_relaxed_loss_threshold()`].
2335 ///
2336 /// [`Config::set_enable_relaxed_loss_threshold()`]: struct.Config.html#method.set_enable_relaxed_loss_threshold
2337 #[cfg(feature = "boringssl-boring-crate")]
2338 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
2339 pub fn set_enable_relaxed_loss_threshold_in_handshake(
2340 ssl: &mut boring::ssl::SslRef, enable: bool,
2341 ) -> Result<()> {
2342 let ex_data = tls::ExData::from_ssl_ref(ssl).ok_or(Error::TlsFail)?;
2343
2344 ex_data.recovery_config.enable_relaxed_loss_threshold = enable;
2345
2346 Ok(())
2347 }
2348
2349 /// Configures whether to enable HyStart++.
2350 ///
2351 /// This function can only be called inside one of BoringSSL's handshake
2352 /// callbacks, before any packet has been sent. Calling this function any
2353 /// other time will have no effect.
2354 ///
2355 /// See [`Config::enable_hystart()`].
2356 ///
2357 /// [`Config::enable_hystart()`]: struct.Config.html#method.enable_hystart
2358 #[cfg(feature = "boringssl-boring-crate")]
2359 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
2360 pub fn set_hystart_in_handshake(
2361 ssl: &mut boring::ssl::SslRef, v: bool,
2362 ) -> Result<()> {
2363 let ex_data = tls::ExData::from_ssl_ref(ssl).ok_or(Error::TlsFail)?;
2364
2365 ex_data.recovery_config.hystart = v;
2366
2367 Ok(())
2368 }
2369
2370 /// Configures whether to enable pacing.
2371 ///
2372 /// This function can only be called inside one of BoringSSL's handshake
2373 /// callbacks, before any packet has been sent. Calling this function any
2374 /// other time will have no effect.
2375 ///
2376 /// See [`Config::enable_pacing()`].
2377 ///
2378 /// [`Config::enable_pacing()`]: struct.Config.html#method.enable_pacing
2379 #[cfg(feature = "boringssl-boring-crate")]
2380 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
2381 pub fn set_pacing_in_handshake(
2382 ssl: &mut boring::ssl::SslRef, v: bool,
2383 ) -> Result<()> {
2384 let ex_data = tls::ExData::from_ssl_ref(ssl).ok_or(Error::TlsFail)?;
2385
2386 ex_data.recovery_config.pacing = v;
2387
2388 Ok(())
2389 }
2390
2391 /// Sets the max value for pacing rate.
2392 ///
2393 /// This function can only be called inside one of BoringSSL's handshake
2394 /// callbacks, before any packet has been sent. Calling this function any
2395 /// other time will have no effect.
2396 ///
2397 /// See [`Config::set_max_pacing_rate()`].
2398 ///
2399 /// [`Config::set_max_pacing_rate()`]: struct.Config.html#method.set_max_pacing_rate
2400 #[cfg(feature = "boringssl-boring-crate")]
2401 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
2402 pub fn set_max_pacing_rate_in_handshake(
2403 ssl: &mut boring::ssl::SslRef, v: Option<u64>,
2404 ) -> Result<()> {
2405 let ex_data = tls::ExData::from_ssl_ref(ssl).ok_or(Error::TlsFail)?;
2406
2407 ex_data.recovery_config.max_pacing_rate = v;
2408
2409 Ok(())
2410 }
2411
2412 /// Sets the maximum outgoing UDP payload size.
2413 ///
2414 /// This function can only be called inside one of BoringSSL's handshake
2415 /// callbacks, before any packet has been sent. Calling this function any
2416 /// other time will have no effect.
2417 ///
2418 /// See [`Config::set_max_send_udp_payload_size()`].
2419 ///
2420 /// [`Config::set_max_send_udp_payload_size()`]: struct.Config.html#method.set_max_send_udp_payload_size
2421 #[cfg(feature = "boringssl-boring-crate")]
2422 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
2423 pub fn set_max_send_udp_payload_size_in_handshake(
2424 ssl: &mut boring::ssl::SslRef, v: usize,
2425 ) -> Result<()> {
2426 let ex_data = tls::ExData::from_ssl_ref(ssl).ok_or(Error::TlsFail)?;
2427
2428 ex_data.recovery_config.max_send_udp_payload_size = v;
2429
2430 Ok(())
2431 }
2432
2433 /// Sets the send capacity factor.
2434 ///
2435 /// This function can only be called inside one of BoringSSL's handshake
2436 /// callbacks, before any packet has been sent. Calling this function any
2437 /// other time will have no effect.
2438 ///
2439 /// See [`Config::set_send_capacity_factor()`].
2440 ///
2441 /// [`Config::set_max_send_udp_payload_size()`]: struct.Config.html#method.set_send_capacity_factor
2442 #[cfg(feature = "boringssl-boring-crate")]
2443 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
2444 pub fn set_send_capacity_factor_in_handshake(
2445 ssl: &mut boring::ssl::SslRef, v: f64,
2446 ) -> Result<()> {
2447 let ex_data = tls::ExData::from_ssl_ref(ssl).ok_or(Error::TlsFail)?;
2448
2449 ex_data.tx_cap_factor = v;
2450
2451 Ok(())
2452 }
2453
2454 /// Configures whether to do path MTU discovery.
2455 ///
2456 /// This function can only be called inside one of BoringSSL's handshake
2457 /// callbacks, before any packet has been sent. Calling this function any
2458 /// other time will have no effect.
2459 ///
2460 /// See [`Config::discover_pmtu()`].
2461 ///
2462 /// [`Config::discover_pmtu()`]: struct.Config.html#method.discover_pmtu
2463 #[cfg(feature = "boringssl-boring-crate")]
2464 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
2465 pub fn set_discover_pmtu_in_handshake(
2466 ssl: &mut boring::ssl::SslRef, discover: bool, max_probes: u8,
2467 ) -> Result<()> {
2468 let ex_data = tls::ExData::from_ssl_ref(ssl).ok_or(Error::TlsFail)?;
2469
2470 ex_data.pmtud = Some((discover, max_probes));
2471
2472 Ok(())
2473 }
2474
2475 /// Sets the `max_idle_timeout` transport parameter, in milliseconds.
2476 ///
2477 /// This function can only be called inside one of BoringSSL's handshake
2478 /// callbacks, before any packet has been sent. Calling this function any
2479 /// other time will have no effect.
2480 ///
2481 /// See [`Config::set_max_idle_timeout()`].
2482 ///
2483 /// [`Config::set_max_idle_timeout()`]: struct.Config.html#method.set_max_idle_timeout
2484 #[cfg(feature = "boringssl-boring-crate")]
2485 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
2486 pub fn set_max_idle_timeout_in_handshake(
2487 ssl: &mut boring::ssl::SslRef, v: u64,
2488 ) -> Result<()> {
2489 let ex_data = tls::ExData::from_ssl_ref(ssl).ok_or(Error::TlsFail)?;
2490
2491 ex_data.local_transport_params.max_idle_timeout = v;
2492
2493 Self::set_transport_parameters_in_hanshake(
2494 ex_data.local_transport_params.clone(),
2495 ex_data.is_server,
2496 ssl,
2497 )
2498 }
2499
2500 /// Sets the `initial_max_streams_bidi` transport parameter.
2501 ///
2502 /// This function can only be called inside one of BoringSSL's handshake
2503 /// callbacks, before any packet has been sent. Calling this function any
2504 /// other time will have no effect.
2505 ///
2506 /// See [`Config::set_initial_max_streams_bidi()`].
2507 ///
2508 /// [`Config::set_initial_max_streams_bidi()`]: struct.Config.html#method.set_initial_max_streams_bidi
2509 #[cfg(feature = "boringssl-boring-crate")]
2510 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
2511 pub fn set_initial_max_streams_bidi_in_handshake(
2512 ssl: &mut boring::ssl::SslRef, v: u64,
2513 ) -> Result<()> {
2514 let ex_data = tls::ExData::from_ssl_ref(ssl).ok_or(Error::TlsFail)?;
2515
2516 ex_data.local_transport_params.initial_max_streams_bidi = v;
2517
2518 Self::set_transport_parameters_in_hanshake(
2519 ex_data.local_transport_params.clone(),
2520 ex_data.is_server,
2521 ssl,
2522 )
2523 }
2524
2525 #[cfg(feature = "boringssl-boring-crate")]
2526 fn set_transport_parameters_in_hanshake(
2527 params: TransportParams, is_server: bool, ssl: &mut boring::ssl::SslRef,
2528 ) -> Result<()> {
2529 use foreign_types_shared::ForeignTypeRef;
2530
2531 // In order to apply the new parameter to the TLS state before TPs are
2532 // written into a TLS message, we need to re-encode all TPs immediately.
2533 //
2534 // Since we don't have direct access to the main `Connection` object, we
2535 // need to re-create the `Handshake` state from the `SslRef`.
2536 //
2537 // SAFETY: the `Handshake` object must not be drop()ed, otherwise it
2538 // would free the underlying BoringSSL structure.
2539 let mut handshake =
2540 unsafe { tls::Handshake::from_ptr(ssl.as_ptr() as _) };
2541 handshake.set_quic_transport_params(¶ms, is_server)?;
2542
2543 // Avoid running `drop(handshake)` as that would free the underlying
2544 // handshake state.
2545 std::mem::forget(handshake);
2546
2547 Ok(())
2548 }
2549
2550 /// Processes QUIC packets received from the peer.
2551 ///
2552 /// On success the number of bytes processed from the input buffer is
2553 /// returned. On error the connection will be closed by calling [`close()`]
2554 /// with the appropriate error code.
2555 ///
2556 /// Coalesced packets will be processed as necessary.
2557 ///
2558 /// Note that the contents of the input buffer `buf` might be modified by
2559 /// this function due to, for example, in-place decryption.
2560 ///
2561 /// [`close()`]: struct.Connection.html#method.close
2562 ///
2563 /// ## Examples:
2564 ///
2565 /// ```no_run
2566 /// # let mut buf = [0; 512];
2567 /// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
2568 /// # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
2569 /// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
2570 /// # let peer = "127.0.0.1:1234".parse().unwrap();
2571 /// # let local = socket.local_addr().unwrap();
2572 /// # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
2573 /// loop {
2574 /// let (read, from) = socket.recv_from(&mut buf).unwrap();
2575 ///
2576 /// let recv_info = quiche::RecvInfo {
2577 /// from,
2578 /// to: local,
2579 /// };
2580 ///
2581 /// let read = match conn.recv(&mut buf[..read], recv_info) {
2582 /// Ok(v) => v,
2583 ///
2584 /// Err(e) => {
2585 /// // An error occurred, handle it.
2586 /// break;
2587 /// },
2588 /// };
2589 /// }
2590 /// # Ok::<(), quiche::Error>(())
2591 /// ```
2592 pub fn recv(&mut self, buf: &mut [u8], info: RecvInfo) -> Result<usize> {
2593 let len = buf.len();
2594
2595 if len == 0 {
2596 return Err(Error::BufferTooShort);
2597 }
2598
2599 let recv_pid = self.paths.path_id_from_addrs(&(info.to, info.from));
2600
2601 if let Some(recv_pid) = recv_pid {
2602 let recv_path = self.paths.get_mut(recv_pid)?;
2603
2604 // Keep track of how many bytes we received from the client, so we
2605 // can limit bytes sent back before address validation, to a
2606 // multiple of this. The limit needs to be increased early on, so
2607 // that if there is an error there is enough credit to send a
2608 // CONNECTION_CLOSE.
2609 //
2610 // It doesn't matter if the packets received were valid or not, we
2611 // only need to track the total amount of bytes received.
2612 //
2613 // Note that we also need to limit the number of bytes we sent on a
2614 // path if we are not the host that initiated its usage.
2615 if self.is_server && !recv_path.verified_peer_address {
2616 recv_path.max_send_bytes += len * self.max_amplification_factor;
2617 }
2618 } else if !self.is_server {
2619 // If a client receives packets from an unknown server address,
2620 // the client MUST discard these packets.
2621 trace!(
2622 "{} client received packet from unknown address {:?}, dropping",
2623 self.trace_id,
2624 info,
2625 );
2626
2627 return Ok(len);
2628 }
2629
2630 let mut done = 0;
2631 let mut left = len;
2632
2633 // Process coalesced packets.
2634 while left > 0 {
2635 let read = match self.recv_single(
2636 &mut buf[len - left..len],
2637 &info,
2638 recv_pid,
2639 ) {
2640 Ok(v) => v,
2641
2642 Err(Error::Done) => {
2643 // If the packet can't be processed or decrypted, check if
2644 // it's a stateless reset.
2645 if self.is_stateless_reset(&buf[len - left..len]) {
2646 trace!("{} packet is a stateless reset", self.trace_id);
2647
2648 self.mark_closed();
2649 }
2650
2651 left
2652 },
2653
2654 Err(e) => {
2655 // In case of error processing the incoming packet, close
2656 // the connection.
2657 self.close(false, e.to_wire(), b"").ok();
2658 return Err(e);
2659 },
2660 };
2661
2662 done += read;
2663 left -= read;
2664 }
2665
2666 // Even though the packet was previously "accepted", it
2667 // should be safe to forward the error, as it also comes
2668 // from the `recv()` method.
2669 self.process_undecrypted_0rtt_packets()?;
2670
2671 Ok(done)
2672 }
2673
2674 fn process_undecrypted_0rtt_packets(&mut self) -> Result<()> {
2675 // Process previously undecryptable 0-RTT packets if the decryption key
2676 // is now available.
2677 if self.crypto_ctx[packet::Epoch::Application]
2678 .crypto_0rtt_open
2679 .is_some()
2680 {
2681 while let Some((mut pkt, info)) = self.undecryptable_pkts.pop_front()
2682 {
2683 if let Err(e) = self.recv(&mut pkt, info) {
2684 self.undecryptable_pkts.clear();
2685
2686 return Err(e);
2687 }
2688 }
2689 }
2690 Ok(())
2691 }
2692
2693 /// Returns true if a QUIC packet is a stateless reset.
2694 fn is_stateless_reset(&self, buf: &[u8]) -> bool {
2695 // If the packet is too small, then we just throw it away.
2696 let buf_len = buf.len();
2697 if buf_len < 21 {
2698 return false;
2699 }
2700
2701 // TODO: we should iterate over all active destination connection IDs
2702 // and check against their reset token.
2703 match self.peer_transport_params.stateless_reset_token {
2704 Some(token) => {
2705 let token_len = 16;
2706
2707 crypto::verify_slices_are_equal(
2708 &token.to_be_bytes(),
2709 &buf[buf_len - token_len..buf_len],
2710 )
2711 .is_ok()
2712 },
2713
2714 None => false,
2715 }
2716 }
2717
2718 /// Processes a single QUIC packet received from the peer.
2719 ///
2720 /// On success the number of bytes processed from the input buffer is
2721 /// returned. When the [`Done`] error is returned, processing of the
2722 /// remainder of the incoming UDP datagram should be interrupted.
2723 ///
2724 /// Note that a server might observe a new 4-tuple, preventing to
2725 /// know in advance to which path the incoming packet belongs to (`recv_pid`
2726 /// is `None`). As a client, packets from unknown 4-tuple are dropped
2727 /// beforehand (see `recv()`).
2728 ///
2729 /// On error, an error other than [`Done`] is returned.
2730 ///
2731 /// [`Done`]: enum.Error.html#variant.Done
2732 fn recv_single(
2733 &mut self, buf: &mut [u8], info: &RecvInfo, recv_pid: Option<usize>,
2734 ) -> Result<usize> {
2735 let now = Instant::now();
2736
2737 if buf.is_empty() {
2738 return Err(Error::Done);
2739 }
2740
2741 if self.is_closed() || self.is_draining() {
2742 return Err(Error::Done);
2743 }
2744
2745 let is_closing = self.local_error.is_some();
2746
2747 if is_closing {
2748 return Err(Error::Done);
2749 }
2750
2751 let buf_len = buf.len();
2752
2753 let mut b = octets::OctetsMut::with_slice(buf);
2754
2755 let mut hdr = Header::from_bytes(&mut b, self.source_id().len())
2756 .map_err(|e| {
2757 drop_pkt_on_err(
2758 e,
2759 self.recv_count,
2760 self.is_server,
2761 &self.trace_id,
2762 )
2763 })?;
2764
2765 if hdr.ty == Type::VersionNegotiation {
2766 // Version negotiation packets can only be sent by the server.
2767 if self.is_server {
2768 return Err(Error::Done);
2769 }
2770
2771 // Ignore duplicate version negotiation.
2772 if self.did_version_negotiation {
2773 return Err(Error::Done);
2774 }
2775
2776 // Ignore version negotiation if any other packet has already been
2777 // successfully processed.
2778 if self.recv_count > 0 {
2779 return Err(Error::Done);
2780 }
2781
2782 if hdr.dcid != self.source_id() {
2783 return Err(Error::Done);
2784 }
2785
2786 if hdr.scid != self.destination_id() {
2787 return Err(Error::Done);
2788 }
2789
2790 trace!("{} rx pkt {:?}", self.trace_id, hdr);
2791
2792 let versions = hdr.versions.ok_or(Error::Done)?;
2793
2794 // Ignore version negotiation if the version already selected is
2795 // listed.
2796 if versions.contains(&self.version) {
2797 return Err(Error::Done);
2798 }
2799
2800 let supported_versions =
2801 versions.iter().filter(|&&v| version_is_supported(v));
2802
2803 let mut found_version = false;
2804
2805 for &v in supported_versions {
2806 found_version = true;
2807
2808 // The final version takes precedence over draft ones.
2809 if v == PROTOCOL_VERSION_V1 {
2810 self.version = v;
2811 break;
2812 }
2813
2814 self.version = cmp::max(self.version, v);
2815 }
2816
2817 if !found_version {
2818 // We don't support any of the versions offered.
2819 //
2820 // While a man-in-the-middle attacker might be able to
2821 // inject a version negotiation packet that triggers this
2822 // failure, the window of opportunity is very small and
2823 // this error is quite useful for debugging, so don't just
2824 // ignore the packet.
2825 return Err(Error::UnknownVersion);
2826 }
2827
2828 self.did_version_negotiation = true;
2829
2830 // Derive Initial secrets based on the new version.
2831 let (aead_open, aead_seal) = crypto::derive_initial_key_material(
2832 &self.destination_id(),
2833 self.version,
2834 self.is_server,
2835 true,
2836 )?;
2837
2838 // Reset connection state to force sending another Initial packet.
2839 self.drop_epoch_state(packet::Epoch::Initial, now);
2840 self.got_peer_conn_id = false;
2841 self.handshake.clear()?;
2842
2843 self.crypto_ctx[packet::Epoch::Initial].crypto_open = Some(aead_open);
2844 self.crypto_ctx[packet::Epoch::Initial].crypto_seal = Some(aead_seal);
2845
2846 self.handshake
2847 .use_legacy_codepoint(self.version != PROTOCOL_VERSION_V1);
2848
2849 // Encode transport parameters again, as the new version might be
2850 // using a different format.
2851 self.encode_transport_params()?;
2852
2853 return Err(Error::Done);
2854 }
2855
2856 if hdr.ty == Type::Retry {
2857 // Retry packets can only be sent by the server.
2858 if self.is_server {
2859 return Err(Error::Done);
2860 }
2861
2862 // Ignore duplicate retry.
2863 if self.did_retry {
2864 return Err(Error::Done);
2865 }
2866
2867 // Check if Retry packet is valid.
2868 if packet::verify_retry_integrity(
2869 &b,
2870 &self.destination_id(),
2871 self.version,
2872 )
2873 .is_err()
2874 {
2875 return Err(Error::Done);
2876 }
2877
2878 trace!("{} rx pkt {:?}", self.trace_id, hdr);
2879
2880 self.token = hdr.token;
2881 self.did_retry = true;
2882
2883 // Remember peer's new connection ID.
2884 self.odcid = Some(self.destination_id().into_owned());
2885
2886 self.set_initial_dcid(
2887 hdr.scid.clone(),
2888 None,
2889 self.paths.get_active_path_id()?,
2890 )?;
2891
2892 self.rscid = Some(self.destination_id().into_owned());
2893
2894 // Derive Initial secrets using the new connection ID.
2895 let (aead_open, aead_seal) = crypto::derive_initial_key_material(
2896 &hdr.scid,
2897 self.version,
2898 self.is_server,
2899 true,
2900 )?;
2901
2902 // Reset connection state to force sending another Initial packet.
2903 self.drop_epoch_state(packet::Epoch::Initial, now);
2904 self.got_peer_conn_id = false;
2905 self.handshake.clear()?;
2906
2907 self.crypto_ctx[packet::Epoch::Initial].crypto_open = Some(aead_open);
2908 self.crypto_ctx[packet::Epoch::Initial].crypto_seal = Some(aead_seal);
2909
2910 return Err(Error::Done);
2911 }
2912
2913 if self.is_server && !self.did_version_negotiation {
2914 if !version_is_supported(hdr.version) {
2915 return Err(Error::UnknownVersion);
2916 }
2917
2918 self.version = hdr.version;
2919 self.did_version_negotiation = true;
2920
2921 self.handshake
2922 .use_legacy_codepoint(self.version != PROTOCOL_VERSION_V1);
2923
2924 // Encode transport parameters again, as the new version might be
2925 // using a different format.
2926 self.encode_transport_params()?;
2927 }
2928
2929 if hdr.ty != Type::Short && hdr.version != self.version {
2930 // At this point version negotiation was already performed, so
2931 // ignore packets that don't match the connection's version.
2932 return Err(Error::Done);
2933 }
2934
2935 // Long header packets have an explicit payload length, but short
2936 // packets don't so just use the remaining capacity in the buffer.
2937 let payload_len = if hdr.ty == Type::Short {
2938 b.cap()
2939 } else {
2940 b.get_varint().map_err(|e| {
2941 drop_pkt_on_err(
2942 e.into(),
2943 self.recv_count,
2944 self.is_server,
2945 &self.trace_id,
2946 )
2947 })? as usize
2948 };
2949
2950 // Make sure the buffer is same or larger than an explicit
2951 // payload length.
2952 if payload_len > b.cap() {
2953 return Err(drop_pkt_on_err(
2954 Error::InvalidPacket,
2955 self.recv_count,
2956 self.is_server,
2957 &self.trace_id,
2958 ));
2959 }
2960
2961 // Derive initial secrets on the server.
2962 if !self.derived_initial_secrets {
2963 let (aead_open, aead_seal) = crypto::derive_initial_key_material(
2964 &hdr.dcid,
2965 self.version,
2966 self.is_server,
2967 false,
2968 )?;
2969
2970 self.crypto_ctx[packet::Epoch::Initial].crypto_open = Some(aead_open);
2971 self.crypto_ctx[packet::Epoch::Initial].crypto_seal = Some(aead_seal);
2972
2973 self.derived_initial_secrets = true;
2974 }
2975
2976 // Select packet number space epoch based on the received packet's type.
2977 let epoch = hdr.ty.to_epoch()?;
2978
2979 // Select AEAD context used to open incoming packet.
2980 let aead = if hdr.ty == Type::ZeroRTT {
2981 // Only use 0-RTT key if incoming packet is 0-RTT.
2982 self.crypto_ctx[epoch].crypto_0rtt_open.as_ref()
2983 } else {
2984 // Otherwise use the packet number space's main key.
2985 self.crypto_ctx[epoch].crypto_open.as_ref()
2986 };
2987
2988 // Finally, discard packet if no usable key is available.
2989 let mut aead = match aead {
2990 Some(v) => v,
2991
2992 None => {
2993 if hdr.ty == Type::ZeroRTT &&
2994 self.undecryptable_pkts.len() < MAX_UNDECRYPTABLE_PACKETS &&
2995 !self.is_established()
2996 {
2997 // Buffer 0-RTT packets when the required read key is not
2998 // available yet, and process them later.
2999 //
3000 // TODO: in the future we might want to buffer other types
3001 // of undecryptable packets as well.
3002 let pkt_len = b.off() + payload_len;
3003 let pkt = (b.buf()[..pkt_len]).to_vec();
3004
3005 self.undecryptable_pkts.push_back((pkt, *info));
3006 return Ok(pkt_len);
3007 }
3008
3009 let e = drop_pkt_on_err(
3010 Error::CryptoFail,
3011 self.recv_count,
3012 self.is_server,
3013 &self.trace_id,
3014 );
3015
3016 return Err(e);
3017 },
3018 };
3019
3020 let aead_tag_len = aead.alg().tag_len();
3021
3022 packet::decrypt_hdr(&mut b, &mut hdr, aead).map_err(|e| {
3023 drop_pkt_on_err(e, self.recv_count, self.is_server, &self.trace_id)
3024 })?;
3025
3026 let pn = packet::decode_pkt_num(
3027 self.pkt_num_spaces[epoch].largest_rx_pkt_num,
3028 hdr.pkt_num,
3029 hdr.pkt_num_len,
3030 );
3031
3032 let pn_len = hdr.pkt_num_len;
3033
3034 trace!(
3035 "{} rx pkt {:?} len={} pn={} {}",
3036 self.trace_id,
3037 hdr,
3038 payload_len,
3039 pn,
3040 AddrTupleFmt(info.from, info.to)
3041 );
3042
3043 #[cfg(feature = "qlog")]
3044 let mut qlog_frames = vec![];
3045
3046 // Check for key update.
3047 let mut aead_next = None;
3048
3049 if self.handshake_confirmed &&
3050 hdr.ty != Type::ZeroRTT &&
3051 hdr.key_phase != self.key_phase
3052 {
3053 // Check if this packet arrived before key update.
3054 if let Some(key_update) = self.crypto_ctx[epoch]
3055 .key_update
3056 .as_ref()
3057 .and_then(|key_update| {
3058 (pn < key_update.pn_on_update).then_some(key_update)
3059 })
3060 {
3061 aead = &key_update.crypto_open;
3062 } else {
3063 trace!("{} peer-initiated key update", self.trace_id);
3064
3065 aead_next = Some((
3066 self.crypto_ctx[epoch]
3067 .crypto_open
3068 .as_ref()
3069 .unwrap()
3070 .derive_next_packet_key()?,
3071 self.crypto_ctx[epoch]
3072 .crypto_seal
3073 .as_ref()
3074 .unwrap()
3075 .derive_next_packet_key()?,
3076 ));
3077
3078 // `aead_next` is always `Some()` at this point, so the `unwrap()`
3079 // will never fail.
3080 aead = &aead_next.as_ref().unwrap().0;
3081 }
3082 }
3083
3084 let mut payload = packet::decrypt_pkt(
3085 &mut b,
3086 pn,
3087 pn_len,
3088 payload_len,
3089 aead,
3090 )
3091 .map_err(|e| {
3092 drop_pkt_on_err(e, self.recv_count, self.is_server, &self.trace_id)
3093 })?;
3094
3095 if self.pkt_num_spaces[epoch].recv_pkt_num.contains(pn) {
3096 trace!("{} ignored duplicate packet {}", self.trace_id, pn);
3097 return Err(Error::Done);
3098 }
3099
3100 // Packets with no frames are invalid.
3101 if payload.cap() == 0 {
3102 return Err(Error::InvalidPacket);
3103 }
3104
3105 // Now that we decrypted the packet, let's see if we can map it to an
3106 // existing path.
3107 let recv_pid = if hdr.ty == Type::Short && self.got_peer_conn_id {
3108 let pkt_dcid = ConnectionId::from_ref(&hdr.dcid);
3109 self.get_or_create_recv_path_id(recv_pid, &pkt_dcid, buf_len, info)?
3110 } else {
3111 // During handshake, we are on the initial path.
3112 self.paths.get_active_path_id()?
3113 };
3114
3115 // The key update is verified once a packet is successfully decrypted
3116 // using the new keys.
3117 if let Some((open_next, seal_next)) = aead_next {
3118 if !self.crypto_ctx[epoch]
3119 .key_update
3120 .as_ref()
3121 .is_none_or(|prev| prev.update_acked)
3122 {
3123 // Peer has updated keys twice without awaiting confirmation.
3124 return Err(Error::KeyUpdate);
3125 }
3126
3127 trace!("{} key update verified", self.trace_id);
3128
3129 let _ = self.crypto_ctx[epoch].crypto_seal.replace(seal_next);
3130
3131 let open_prev = self.crypto_ctx[epoch]
3132 .crypto_open
3133 .replace(open_next)
3134 .unwrap();
3135
3136 let recv_path = self.paths.get_mut(recv_pid)?;
3137
3138 self.crypto_ctx[epoch].key_update = Some(packet::KeyUpdate {
3139 crypto_open: open_prev,
3140 pn_on_update: pn,
3141 update_acked: false,
3142 timer: now + (recv_path.recovery.pto() * 3),
3143 });
3144
3145 self.key_phase = !self.key_phase;
3146
3147 qlog_with_type!(QLOG_PACKET_RX, self.qlog, q, {
3148 let trigger = Some(
3149 qlog::events::security::KeyUpdateOrRetiredTrigger::RemoteUpdate,
3150 );
3151
3152 let ev_data_client =
3153 EventData::KeyUpdated(qlog::events::security::KeyUpdated {
3154 key_type:
3155 qlog::events::security::KeyType::Client1RttSecret,
3156 trigger: trigger.clone(),
3157 ..Default::default()
3158 });
3159
3160 q.add_event_data_with_instant(ev_data_client, now).ok();
3161
3162 let ev_data_server =
3163 EventData::KeyUpdated(qlog::events::security::KeyUpdated {
3164 key_type:
3165 qlog::events::security::KeyType::Server1RttSecret,
3166 trigger,
3167 ..Default::default()
3168 });
3169
3170 q.add_event_data_with_instant(ev_data_server, now).ok();
3171 });
3172 }
3173
3174 if !self.is_server && !self.got_peer_conn_id {
3175 if self.odcid.is_none() {
3176 self.odcid = Some(self.destination_id().into_owned());
3177 }
3178
3179 // Replace the randomly generated destination connection ID with
3180 // the one supplied by the server.
3181 self.set_initial_dcid(
3182 hdr.scid.clone(),
3183 self.peer_transport_params.stateless_reset_token,
3184 recv_pid,
3185 )?;
3186
3187 self.got_peer_conn_id = true;
3188 }
3189
3190 if self.is_server && !self.got_peer_conn_id {
3191 self.set_initial_dcid(hdr.scid.clone(), None, recv_pid)?;
3192
3193 if !self.did_retry {
3194 self.local_transport_params
3195 .original_destination_connection_id =
3196 Some(hdr.dcid.to_vec().into());
3197
3198 self.encode_transport_params()?;
3199 }
3200
3201 self.got_peer_conn_id = true;
3202 }
3203
3204 // To avoid sending an ACK in response to an ACK-only packet, we need
3205 // to keep track of whether this packet contains any frame other than
3206 // ACK and PADDING.
3207 let mut ack_elicited = false;
3208
3209 // Process packet payload. If a frame cannot be processed, store the
3210 // error and stop further packet processing.
3211 let mut frame_processing_err = None;
3212
3213 // To know if the peer migrated the connection, we need to keep track
3214 // whether this is a non-probing packet.
3215 let mut probing = true;
3216
3217 // Process packet payload.
3218 while payload.cap() > 0 {
3219 let frame = frame::Frame::from_bytes(&mut payload, hdr.ty)?;
3220
3221 qlog_with_type!(QLOG_PACKET_RX, self.qlog, _q, {
3222 qlog_frames.push(frame.to_qlog());
3223 });
3224
3225 if frame.ack_eliciting() {
3226 ack_elicited = true;
3227 }
3228
3229 if !frame.probing() {
3230 probing = false;
3231 }
3232
3233 if let Err(e) = self.process_frame(frame, &hdr, recv_pid, epoch, now)
3234 {
3235 frame_processing_err = Some(e);
3236 break;
3237 }
3238 }
3239
3240 qlog_with_type!(QLOG_PACKET_RX, self.qlog, q, {
3241 let packet_size = b.len();
3242
3243 let qlog_pkt_hdr = qlog::events::quic::PacketHeader::with_type(
3244 hdr.ty.to_qlog(),
3245 Some(pn),
3246 Some(hdr.version),
3247 Some(&hdr.scid),
3248 Some(&hdr.dcid),
3249 );
3250
3251 let qlog_raw_info = RawInfo {
3252 length: Some(packet_size as u64),
3253 payload_length: Some(payload_len as u64),
3254 data: None,
3255 };
3256
3257 let ev_data =
3258 EventData::PacketReceived(qlog::events::quic::PacketReceived {
3259 header: qlog_pkt_hdr,
3260 frames: Some(qlog_frames),
3261 raw: Some(qlog_raw_info),
3262 ..Default::default()
3263 });
3264
3265 q.add_event_data_with_instant(ev_data, now).ok();
3266 });
3267
3268 qlog_with_type!(QLOG_PACKET_RX, self.qlog, q, {
3269 let recv_path = self.paths.get_mut(recv_pid)?;
3270 recv_path.recovery.maybe_qlog(q, now);
3271 });
3272
3273 if let Some(e) = frame_processing_err {
3274 // Any frame error is terminal, so now just return.
3275 return Err(e);
3276 }
3277
3278 // Only log the remote transport parameters once the connection is
3279 // established (i.e. after frames have been fully parsed) and only
3280 // once per connection.
3281 if self.is_established() {
3282 qlog_with_type!(QLOG_PARAMS_SET, self.qlog, q, {
3283 if !self.qlog.logged_peer_params {
3284 let ev_data = self
3285 .peer_transport_params
3286 .to_qlog(TransportOwner::Remote, self.handshake.cipher());
3287
3288 q.add_event_data_with_instant(ev_data, now).ok();
3289
3290 self.qlog.logged_peer_params = true;
3291 }
3292 });
3293 }
3294
3295 // Process acked frames. Note that several packets from several paths
3296 // might have been acked by the received packet.
3297 for (_, p) in self.paths.iter_mut() {
3298 while let Some(acked) = p.recovery.next_acked_frame(epoch) {
3299 match acked {
3300 frame::Frame::Ping {
3301 mtu_probe: Some(mtu_probe),
3302 } =>
3303 if let Some(pmtud) = p.pmtud.as_mut() {
3304 trace!(
3305 "{} pmtud probe acked; probe size {:?}",
3306 self.trace_id,
3307 mtu_probe
3308 );
3309
3310 // Ensure the probe is within the supported MTU range
3311 // before updating the max datagram size
3312 if let Some(current_mtu) =
3313 pmtud.successful_probe(mtu_probe)
3314 {
3315 qlog_with_type!(
3316 EventType::ConnectivityEventType(
3317 ConnectivityEventType::MtuUpdated
3318 ),
3319 self.qlog,
3320 q,
3321 {
3322 let pmtu_data = EventData::MtuUpdated(
3323 qlog::events::connectivity::MtuUpdated {
3324 old: Some(
3325 p.recovery.max_datagram_size()
3326 as u16,
3327 ),
3328 new: current_mtu as u16,
3329 done: Some(true),
3330 },
3331 );
3332
3333 q.add_event_data_with_instant(
3334 pmtu_data, now,
3335 )
3336 .ok();
3337 }
3338 );
3339
3340 p.recovery
3341 .pmtud_update_max_datagram_size(current_mtu);
3342 }
3343 },
3344
3345 frame::Frame::ACK { ranges, .. } => {
3346 // Stop acknowledging packets less than or equal to the
3347 // largest acknowledged in the sent ACK frame that, in
3348 // turn, got acked.
3349 if let Some(largest_acked) = ranges.last() {
3350 self.pkt_num_spaces[epoch]
3351 .recv_pkt_need_ack
3352 .remove_until(largest_acked);
3353 }
3354 },
3355
3356 frame::Frame::CryptoHeader { offset, length } => {
3357 self.crypto_ctx[epoch]
3358 .crypto_stream
3359 .send
3360 .ack_and_drop(offset, length);
3361 },
3362
3363 frame::Frame::StreamHeader {
3364 stream_id,
3365 offset,
3366 length,
3367 ..
3368 } => {
3369 // Update tx_buffered and emit qlog before checking if the
3370 // stream still exists. The client does need to ACK
3371 // frames that were received after the client sends a
3372 // ResetStream.
3373 self.tx_buffered =
3374 self.tx_buffered.saturating_sub(length);
3375
3376 qlog_with_type!(QLOG_DATA_MV, self.qlog, q, {
3377 let ev_data = EventData::DataMoved(
3378 qlog::events::quic::DataMoved {
3379 stream_id: Some(stream_id),
3380 offset: Some(offset),
3381 length: Some(length as u64),
3382 from: Some(DataRecipient::Transport),
3383 to: Some(DataRecipient::Dropped),
3384 ..Default::default()
3385 },
3386 );
3387
3388 q.add_event_data_with_instant(ev_data, now).ok();
3389 });
3390
3391 let stream = match self.streams.get_mut(stream_id) {
3392 Some(v) => v,
3393
3394 None => continue,
3395 };
3396
3397 stream.send.ack_and_drop(offset, length);
3398
3399 let priority_key = Arc::clone(&stream.priority_key);
3400
3401 // Only collect the stream if it is complete and not
3402 // readable or writable.
3403 //
3404 // If it is readable, it will get collected when
3405 // stream_recv() is next used.
3406 //
3407 // If it is writable, it might mean that the stream
3408 // has been stopped by the peer (i.e. a STOP_SENDING
3409 // frame is received), in which case before collecting
3410 // the stream we will need to propagate the
3411 // `StreamStopped` error to the application. It will
3412 // instead get collected when one of stream_capacity(),
3413 // stream_writable(), stream_send(), ... is next called.
3414 //
3415 // Note that we can't use `is_writable()` here because
3416 // it returns false if the stream is stopped. Instead,
3417 // since the stream is marked as writable when a
3418 // STOP_SENDING frame is received, we check the writable
3419 // queue directly instead.
3420 let is_writable = priority_key.writable.is_linked() &&
3421 // Ensure that the stream is actually stopped.
3422 stream.send.is_stopped();
3423
3424 let is_complete = stream.is_complete();
3425 let is_readable = stream.is_readable();
3426
3427 if is_complete && !is_readable && !is_writable {
3428 let local = stream.local;
3429 self.streams.collect(stream_id, local);
3430 }
3431 },
3432
3433 frame::Frame::HandshakeDone => {
3434 // Explicitly set this to true, so that if the frame was
3435 // already scheduled for retransmission, it is aborted.
3436 self.handshake_done_sent = true;
3437
3438 self.handshake_done_acked = true;
3439 },
3440
3441 frame::Frame::ResetStream { stream_id, .. } => {
3442 let stream = match self.streams.get_mut(stream_id) {
3443 Some(v) => v,
3444
3445 None => continue,
3446 };
3447
3448 let priority_key = Arc::clone(&stream.priority_key);
3449
3450 // Only collect the stream if it is complete and not
3451 // readable or writable.
3452 //
3453 // If it is readable, it will get collected when
3454 // stream_recv() is next used.
3455 //
3456 // If it is writable, it might mean that the stream
3457 // has been stopped by the peer (i.e. a STOP_SENDING
3458 // frame is received), in which case before collecting
3459 // the stream we will need to propagate the
3460 // `StreamStopped` error to the application. It will
3461 // instead get collected when one of stream_capacity(),
3462 // stream_writable(), stream_send(), ... is next called.
3463 //
3464 // Note that we can't use `is_writable()` here because
3465 // it returns false if the stream is stopped. Instead,
3466 // since the stream is marked as writable when a
3467 // STOP_SENDING frame is received, we check the writable
3468 // queue directly instead.
3469 let is_writable = priority_key.writable.is_linked() &&
3470 // Ensure that the stream is actually stopped.
3471 stream.send.is_stopped();
3472
3473 let is_complete = stream.is_complete();
3474 let is_readable = stream.is_readable();
3475
3476 if is_complete && !is_readable && !is_writable {
3477 let local = stream.local;
3478 self.streams.collect(stream_id, local);
3479 }
3480 },
3481
3482 _ => (),
3483 }
3484 }
3485 }
3486
3487 // Now that we processed all the frames, if there is a path that has no
3488 // Destination CID, try to allocate one.
3489 let no_dcid = self
3490 .paths
3491 .iter_mut()
3492 .filter(|(_, p)| p.active_dcid_seq.is_none());
3493
3494 for (pid, p) in no_dcid {
3495 if self.ids.zero_length_dcid() {
3496 p.active_dcid_seq = Some(0);
3497 continue;
3498 }
3499
3500 let dcid_seq = match self.ids.lowest_available_dcid_seq() {
3501 Some(seq) => seq,
3502 None => break,
3503 };
3504
3505 self.ids.link_dcid_to_path_id(dcid_seq, pid)?;
3506
3507 p.active_dcid_seq = Some(dcid_seq);
3508 }
3509
3510 // We only record the time of arrival of the largest packet number
3511 // that still needs to be acked, to be used for ACK delay calculation.
3512 if self.pkt_num_spaces[epoch].recv_pkt_need_ack.last() < Some(pn) {
3513 self.pkt_num_spaces[epoch].largest_rx_pkt_time = now;
3514 }
3515
3516 self.pkt_num_spaces[epoch].recv_pkt_num.insert(pn);
3517
3518 self.pkt_num_spaces[epoch].recv_pkt_need_ack.push_item(pn);
3519
3520 self.pkt_num_spaces[epoch].ack_elicited =
3521 cmp::max(self.pkt_num_spaces[epoch].ack_elicited, ack_elicited);
3522
3523 self.pkt_num_spaces[epoch].largest_rx_pkt_num =
3524 cmp::max(self.pkt_num_spaces[epoch].largest_rx_pkt_num, pn);
3525
3526 if !probing {
3527 self.pkt_num_spaces[epoch].largest_rx_non_probing_pkt_num = cmp::max(
3528 self.pkt_num_spaces[epoch].largest_rx_non_probing_pkt_num,
3529 pn,
3530 );
3531
3532 // Did the peer migrated to another path?
3533 let active_path_id = self.paths.get_active_path_id()?;
3534
3535 if self.is_server &&
3536 recv_pid != active_path_id &&
3537 self.pkt_num_spaces[epoch].largest_rx_non_probing_pkt_num == pn
3538 {
3539 self.on_peer_migrated(recv_pid, self.disable_dcid_reuse, now)?;
3540 }
3541 }
3542
3543 if let Some(idle_timeout) = self.idle_timeout() {
3544 self.idle_timer = Some(now + idle_timeout);
3545 }
3546
3547 // Update send capacity.
3548 self.update_tx_cap();
3549
3550 self.recv_count += 1;
3551 self.paths.get_mut(recv_pid)?.recv_count += 1;
3552
3553 let read = b.off() + aead_tag_len;
3554
3555 self.recv_bytes += read as u64;
3556 self.paths.get_mut(recv_pid)?.recv_bytes += read as u64;
3557
3558 // An Handshake packet has been received from the client and has been
3559 // successfully processed, so we can drop the initial state and consider
3560 // the client's address to be verified.
3561 if self.is_server && hdr.ty == Type::Handshake {
3562 self.drop_epoch_state(packet::Epoch::Initial, now);
3563
3564 self.paths.get_mut(recv_pid)?.verified_peer_address = true;
3565 }
3566
3567 self.ack_eliciting_sent = false;
3568
3569 Ok(read)
3570 }
3571
3572 /// Writes a single QUIC packet to be sent to the peer.
3573 ///
3574 /// On success the number of bytes written to the output buffer is
3575 /// returned, or [`Done`] if there was nothing to write.
3576 ///
3577 /// The application should call `send()` multiple times until [`Done`] is
3578 /// returned, indicating that there are no more packets to send. It is
3579 /// recommended that `send()` be called in the following cases:
3580 ///
3581 /// * When the application receives QUIC packets from the peer (that is,
3582 /// any time [`recv()`] is also called).
3583 ///
3584 /// * When the connection timer expires (that is, any time [`on_timeout()`]
3585 /// is also called).
3586 ///
3587 /// * When the application sends data to the peer (for example, any time
3588 /// [`stream_send()`] or [`stream_shutdown()`] are called).
3589 ///
3590 /// * When the application receives data from the peer (for example any
3591 /// time [`stream_recv()`] is called).
3592 ///
3593 /// Once [`is_draining()`] returns `true`, it is no longer necessary to call
3594 /// `send()` and all calls will return [`Done`].
3595 ///
3596 /// [`Done`]: enum.Error.html#variant.Done
3597 /// [`recv()`]: struct.Connection.html#method.recv
3598 /// [`on_timeout()`]: struct.Connection.html#method.on_timeout
3599 /// [`stream_send()`]: struct.Connection.html#method.stream_send
3600 /// [`stream_shutdown()`]: struct.Connection.html#method.stream_shutdown
3601 /// [`stream_recv()`]: struct.Connection.html#method.stream_recv
3602 /// [`is_draining()`]: struct.Connection.html#method.is_draining
3603 ///
3604 /// ## Examples:
3605 ///
3606 /// ```no_run
3607 /// # let mut out = [0; 512];
3608 /// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
3609 /// # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
3610 /// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
3611 /// # let peer = "127.0.0.1:1234".parse().unwrap();
3612 /// # let local = socket.local_addr().unwrap();
3613 /// # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
3614 /// loop {
3615 /// let (write, send_info) = match conn.send(&mut out) {
3616 /// Ok(v) => v,
3617 ///
3618 /// Err(quiche::Error::Done) => {
3619 /// // Done writing.
3620 /// break;
3621 /// },
3622 ///
3623 /// Err(e) => {
3624 /// // An error occurred, handle it.
3625 /// break;
3626 /// },
3627 /// };
3628 ///
3629 /// socket.send_to(&out[..write], &send_info.to).unwrap();
3630 /// }
3631 /// # Ok::<(), quiche::Error>(())
3632 /// ```
3633 pub fn send(&mut self, out: &mut [u8]) -> Result<(usize, SendInfo)> {
3634 self.send_on_path(out, None, None)
3635 }
3636
3637 /// Writes a single QUIC packet to be sent to the peer from the specified
3638 /// local address `from` to the destination address `to`.
3639 ///
3640 /// The behavior of this method differs depending on the value of the `from`
3641 /// and `to` parameters:
3642 ///
3643 /// * If both are `Some`, then the method only consider the 4-tuple
3644 /// (`from`, `to`). Application can monitor the 4-tuple availability,
3645 /// either by monitoring [`path_event_next()`] events or by relying on
3646 /// the [`paths_iter()`] method. If the provided 4-tuple does not exist
3647 /// on the connection (anymore), it returns an [`InvalidState`].
3648 ///
3649 /// * If `from` is `Some` and `to` is `None`, then the method only
3650 /// considers sending packets on paths having `from` as local address.
3651 ///
3652 /// * If `to` is `Some` and `from` is `None`, then the method only
3653 /// considers sending packets on paths having `to` as peer address.
3654 ///
3655 /// * If both are `None`, all available paths are considered.
3656 ///
3657 /// On success the number of bytes written to the output buffer is
3658 /// returned, or [`Done`] if there was nothing to write.
3659 ///
3660 /// The application should call `send_on_path()` multiple times until
3661 /// [`Done`] is returned, indicating that there are no more packets to
3662 /// send. It is recommended that `send_on_path()` be called in the
3663 /// following cases:
3664 ///
3665 /// * When the application receives QUIC packets from the peer (that is,
3666 /// any time [`recv()`] is also called).
3667 ///
3668 /// * When the connection timer expires (that is, any time [`on_timeout()`]
3669 /// is also called).
3670 ///
3671 /// * When the application sends data to the peer (for examples, any time
3672 /// [`stream_send()`] or [`stream_shutdown()`] are called).
3673 ///
3674 /// * When the application receives data from the peer (for example any
3675 /// time [`stream_recv()`] is called).
3676 ///
3677 /// Once [`is_draining()`] returns `true`, it is no longer necessary to call
3678 /// `send_on_path()` and all calls will return [`Done`].
3679 ///
3680 /// [`Done`]: enum.Error.html#variant.Done
3681 /// [`InvalidState`]: enum.Error.html#InvalidState
3682 /// [`recv()`]: struct.Connection.html#method.recv
3683 /// [`on_timeout()`]: struct.Connection.html#method.on_timeout
3684 /// [`stream_send()`]: struct.Connection.html#method.stream_send
3685 /// [`stream_shutdown()`]: struct.Connection.html#method.stream_shutdown
3686 /// [`stream_recv()`]: struct.Connection.html#method.stream_recv
3687 /// [`path_event_next()`]: struct.Connection.html#method.path_event_next
3688 /// [`paths_iter()`]: struct.Connection.html#method.paths_iter
3689 /// [`is_draining()`]: struct.Connection.html#method.is_draining
3690 ///
3691 /// ## Examples:
3692 ///
3693 /// ```no_run
3694 /// # let mut out = [0; 512];
3695 /// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
3696 /// # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
3697 /// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
3698 /// # let peer = "127.0.0.1:1234".parse().unwrap();
3699 /// # let local = socket.local_addr().unwrap();
3700 /// # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
3701 /// loop {
3702 /// let (write, send_info) = match conn.send_on_path(&mut out, Some(local), Some(peer)) {
3703 /// Ok(v) => v,
3704 ///
3705 /// Err(quiche::Error::Done) => {
3706 /// // Done writing.
3707 /// break;
3708 /// },
3709 ///
3710 /// Err(e) => {
3711 /// // An error occurred, handle it.
3712 /// break;
3713 /// },
3714 /// };
3715 ///
3716 /// socket.send_to(&out[..write], &send_info.to).unwrap();
3717 /// }
3718 /// # Ok::<(), quiche::Error>(())
3719 /// ```
3720 pub fn send_on_path(
3721 &mut self, out: &mut [u8], from: Option<SocketAddr>,
3722 to: Option<SocketAddr>,
3723 ) -> Result<(usize, SendInfo)> {
3724 if out.is_empty() {
3725 return Err(Error::BufferTooShort);
3726 }
3727
3728 if self.is_closed() || self.is_draining() {
3729 return Err(Error::Done);
3730 }
3731
3732 let now = Instant::now();
3733
3734 if self.local_error.is_none() {
3735 self.do_handshake(now)?;
3736 }
3737
3738 // Forwarding the error value here could confuse
3739 // applications, as they may not expect getting a `recv()`
3740 // error when calling `send()`.
3741 //
3742 // We simply fall-through to sending packets, which should
3743 // take care of terminating the connection as needed.
3744 let _ = self.process_undecrypted_0rtt_packets();
3745
3746 // There's no point in trying to send a packet if the Initial secrets
3747 // have not been derived yet, so return early.
3748 if !self.derived_initial_secrets {
3749 return Err(Error::Done);
3750 }
3751
3752 let mut has_initial = false;
3753
3754 let mut done = 0;
3755
3756 // Limit output packet size to respect the sender and receiver's
3757 // maximum UDP payload size limit.
3758 let mut left = cmp::min(out.len(), self.max_send_udp_payload_size());
3759
3760 let send_pid = match (from, to) {
3761 (Some(f), Some(t)) => self
3762 .paths
3763 .path_id_from_addrs(&(f, t))
3764 .ok_or(Error::InvalidState)?,
3765
3766 _ => self.get_send_path_id(from, to)?,
3767 };
3768
3769 let send_path = self.paths.get_mut(send_pid)?;
3770
3771 // Update max datagram size to allow path MTU discovery probe to be sent.
3772 if let Some(pmtud) = send_path.pmtud.as_mut() {
3773 if pmtud.should_probe() {
3774 let size = if self.handshake_confirmed || self.handshake_completed
3775 {
3776 pmtud.get_probe_size()
3777 } else {
3778 pmtud.get_current_mtu()
3779 };
3780
3781 send_path.recovery.pmtud_update_max_datagram_size(size);
3782
3783 left =
3784 cmp::min(out.len(), send_path.recovery.max_datagram_size());
3785 }
3786 }
3787
3788 // Limit data sent by the server based on the amount of data received
3789 // from the client before its address is validated.
3790 if !send_path.verified_peer_address && self.is_server {
3791 left = cmp::min(left, send_path.max_send_bytes);
3792 }
3793
3794 // Generate coalesced packets.
3795 while left > 0 {
3796 let (ty, written) = match self.send_single(
3797 &mut out[done..done + left],
3798 send_pid,
3799 has_initial,
3800 now,
3801 ) {
3802 Ok(v) => v,
3803
3804 Err(Error::BufferTooShort) | Err(Error::Done) => break,
3805
3806 Err(e) => return Err(e),
3807 };
3808
3809 done += written;
3810 left -= written;
3811
3812 match ty {
3813 Type::Initial => has_initial = true,
3814
3815 // No more packets can be coalesced after a 1-RTT.
3816 Type::Short => break,
3817
3818 _ => (),
3819 };
3820
3821 // When sending multiple PTO probes, don't coalesce them together,
3822 // so they are sent on separate UDP datagrams.
3823 if let Ok(epoch) = ty.to_epoch() {
3824 if self.paths.get_mut(send_pid)?.recovery.loss_probes(epoch) > 0 {
3825 break;
3826 }
3827 }
3828
3829 // Don't coalesce packets that must go on different paths.
3830 if !(from.is_some() && to.is_some()) &&
3831 self.get_send_path_id(from, to)? != send_pid
3832 {
3833 break;
3834 }
3835 }
3836
3837 if done == 0 {
3838 self.last_tx_data = self.tx_data;
3839
3840 return Err(Error::Done);
3841 }
3842
3843 if has_initial && left > 0 && done < MIN_CLIENT_INITIAL_LEN {
3844 let pad_len = cmp::min(left, MIN_CLIENT_INITIAL_LEN - done);
3845
3846 // Fill padding area with null bytes, to avoid leaking information
3847 // in case the application reuses the packet buffer.
3848 out[done..done + pad_len].fill(0);
3849
3850 done += pad_len;
3851 }
3852
3853 let send_path = self.paths.get(send_pid)?;
3854
3855 let info = SendInfo {
3856 from: send_path.local_addr(),
3857 to: send_path.peer_addr(),
3858
3859 at: send_path.recovery.get_packet_send_time(now),
3860 };
3861
3862 Ok((done, info))
3863 }
3864
3865 fn send_single(
3866 &mut self, out: &mut [u8], send_pid: usize, has_initial: bool,
3867 now: Instant,
3868 ) -> Result<(Type, usize)> {
3869 if out.is_empty() {
3870 return Err(Error::BufferTooShort);
3871 }
3872
3873 if self.is_draining() {
3874 return Err(Error::Done);
3875 }
3876
3877 let is_closing = self.local_error.is_some();
3878
3879 let out_len = out.len();
3880
3881 let mut b = octets::OctetsMut::with_slice(out);
3882
3883 let pkt_type = self.write_pkt_type(send_pid)?;
3884
3885 let max_dgram_len = if !self.dgram_send_queue.is_empty() {
3886 self.dgram_max_writable_len()
3887 } else {
3888 None
3889 };
3890
3891 let epoch = pkt_type.to_epoch()?;
3892 let pkt_space = &mut self.pkt_num_spaces[epoch];
3893 let crypto_ctx = &mut self.crypto_ctx[epoch];
3894
3895 // Process lost frames. There might be several paths having lost frames.
3896 for (_, p) in self.paths.iter_mut() {
3897 while let Some(lost) = p.recovery.next_lost_frame(epoch) {
3898 match lost {
3899 frame::Frame::CryptoHeader { offset, length } => {
3900 crypto_ctx.crypto_stream.send.retransmit(offset, length);
3901
3902 self.stream_retrans_bytes += length as u64;
3903 p.stream_retrans_bytes += length as u64;
3904
3905 self.retrans_count += 1;
3906 p.retrans_count += 1;
3907 },
3908
3909 frame::Frame::StreamHeader {
3910 stream_id,
3911 offset,
3912 length,
3913 fin,
3914 } => {
3915 let stream = match self.streams.get_mut(stream_id) {
3916 // Only retransmit data if the stream is not closed
3917 // or stopped.
3918 Some(v) if !v.send.is_stopped() => v,
3919
3920 // Data on a closed stream will not be retransmitted
3921 // or acked after it is declared lost, so update
3922 // tx_buffered and qlog.
3923 _ => {
3924 self.tx_buffered =
3925 self.tx_buffered.saturating_sub(length);
3926
3927 qlog_with_type!(QLOG_DATA_MV, self.qlog, q, {
3928 let ev_data = EventData::DataMoved(
3929 qlog::events::quic::DataMoved {
3930 stream_id: Some(stream_id),
3931 offset: Some(offset),
3932 length: Some(length as u64),
3933 from: Some(DataRecipient::Transport),
3934 to: Some(DataRecipient::Dropped),
3935 ..Default::default()
3936 },
3937 );
3938
3939 q.add_event_data_with_instant(ev_data, now)
3940 .ok();
3941 });
3942
3943 continue;
3944 },
3945 };
3946
3947 let was_flushable = stream.is_flushable();
3948
3949 let empty_fin = length == 0 && fin;
3950
3951 stream.send.retransmit(offset, length);
3952
3953 // If the stream is now flushable push it to the
3954 // flushable queue, but only if it wasn't already
3955 // queued.
3956 //
3957 // Consider the stream flushable also when we are
3958 // sending a zero-length frame that has the fin flag
3959 // set.
3960 if (stream.is_flushable() || empty_fin) && !was_flushable
3961 {
3962 let priority_key = Arc::clone(&stream.priority_key);
3963 self.streams.insert_flushable(&priority_key);
3964 }
3965
3966 self.stream_retrans_bytes += length as u64;
3967 p.stream_retrans_bytes += length as u64;
3968
3969 self.retrans_count += 1;
3970 p.retrans_count += 1;
3971 },
3972
3973 frame::Frame::ACK { .. } => {
3974 pkt_space.ack_elicited = true;
3975 },
3976
3977 frame::Frame::ResetStream {
3978 stream_id,
3979 error_code,
3980 final_size,
3981 } =>
3982 if self.streams.get(stream_id).is_some() {
3983 self.streams
3984 .insert_reset(stream_id, error_code, final_size);
3985 },
3986
3987 // Retransmit HANDSHAKE_DONE only if it hasn't been acked at
3988 // least once already.
3989 frame::Frame::HandshakeDone if !self.handshake_done_acked => {
3990 self.handshake_done_sent = false;
3991 },
3992
3993 frame::Frame::MaxStreamData { stream_id, .. } => {
3994 if self.streams.get(stream_id).is_some() {
3995 self.streams.insert_almost_full(stream_id);
3996 }
3997 },
3998
3999 frame::Frame::MaxData { .. } => {
4000 self.almost_full = true;
4001 },
4002
4003 frame::Frame::NewConnectionId { seq_num, .. } => {
4004 self.ids.mark_advertise_new_scid_seq(seq_num, true);
4005 },
4006
4007 frame::Frame::RetireConnectionId { seq_num } => {
4008 self.ids.mark_retire_dcid_seq(seq_num, true)?;
4009 },
4010
4011 frame::Frame::Ping {
4012 mtu_probe: Some(failed_probe),
4013 } =>
4014 if let Some(pmtud) = p.pmtud.as_mut() {
4015 trace!("pmtud probe dropped: {failed_probe}");
4016 pmtud.failed_probe(failed_probe);
4017 },
4018
4019 _ => (),
4020 }
4021 }
4022 }
4023 self.check_tx_buffered_invariant();
4024
4025 let is_app_limited = self.delivery_rate_check_if_app_limited();
4026 let n_paths = self.paths.len();
4027 let path = self.paths.get_mut(send_pid)?;
4028 let flow_control = &mut self.flow_control;
4029 let pkt_space = &mut self.pkt_num_spaces[epoch];
4030 let crypto_ctx = &mut self.crypto_ctx[epoch];
4031 let pkt_num_manager = &mut self.pkt_num_manager;
4032
4033 let mut left = if let Some(pmtud) = path.pmtud.as_mut() {
4034 // Limit output buffer size by estimated path MTU.
4035 cmp::min(pmtud.get_current_mtu(), b.cap())
4036 } else {
4037 b.cap()
4038 };
4039
4040 if pkt_num_manager.should_skip_pn(self.handshake_completed) {
4041 pkt_num_manager.set_skip_pn(Some(self.next_pkt_num));
4042 self.next_pkt_num += 1;
4043 };
4044 let pn = self.next_pkt_num;
4045
4046 let largest_acked_pkt =
4047 path.recovery.get_largest_acked_on_epoch(epoch).unwrap_or(0);
4048 let pn_len = packet::pkt_num_len(pn, largest_acked_pkt);
4049
4050 // The AEAD overhead at the current encryption level.
4051 let crypto_overhead = crypto_ctx.crypto_overhead().ok_or(Error::Done)?;
4052
4053 let dcid_seq = path.active_dcid_seq.ok_or(Error::OutOfIdentifiers)?;
4054
4055 let dcid =
4056 ConnectionId::from_ref(self.ids.get_dcid(dcid_seq)?.cid.as_ref());
4057
4058 let scid = if let Some(scid_seq) = path.active_scid_seq {
4059 ConnectionId::from_ref(self.ids.get_scid(scid_seq)?.cid.as_ref())
4060 } else if pkt_type == Type::Short {
4061 ConnectionId::default()
4062 } else {
4063 return Err(Error::InvalidState);
4064 };
4065
4066 let hdr = Header {
4067 ty: pkt_type,
4068
4069 version: self.version,
4070
4071 dcid,
4072 scid,
4073
4074 pkt_num: 0,
4075 pkt_num_len: pn_len,
4076
4077 // Only clone token for Initial packets, as other packets don't have
4078 // this field (Retry doesn't count, as it's not encoded as part of
4079 // this code path).
4080 token: if pkt_type == Type::Initial {
4081 self.token.clone()
4082 } else {
4083 None
4084 },
4085
4086 versions: None,
4087 key_phase: self.key_phase,
4088 };
4089
4090 hdr.to_bytes(&mut b)?;
4091
4092 let hdr_trace = if log::max_level() == log::LevelFilter::Trace {
4093 Some(format!("{hdr:?}"))
4094 } else {
4095 None
4096 };
4097
4098 let hdr_ty = hdr.ty;
4099
4100 #[cfg(feature = "qlog")]
4101 let qlog_pkt_hdr = self.qlog.streamer.as_ref().map(|_q| {
4102 qlog::events::quic::PacketHeader::with_type(
4103 hdr.ty.to_qlog(),
4104 Some(pn),
4105 Some(hdr.version),
4106 Some(&hdr.scid),
4107 Some(&hdr.dcid),
4108 )
4109 });
4110
4111 // Calculate the space required for the packet, including the header
4112 // the payload length, the packet number and the AEAD overhead.
4113 let mut overhead = b.off() + pn_len + crypto_overhead;
4114
4115 // We assume that the payload length, which is only present in long
4116 // header packets, can always be encoded with a 2-byte varint.
4117 if pkt_type != Type::Short {
4118 overhead += PAYLOAD_LENGTH_LEN;
4119 }
4120
4121 // Make sure we have enough space left for the packet overhead.
4122 match left.checked_sub(overhead) {
4123 Some(v) => left = v,
4124
4125 None => {
4126 // We can't send more because there isn't enough space available
4127 // in the output buffer.
4128 //
4129 // This usually happens when we try to send a new packet but
4130 // failed because cwnd is almost full. In such case app_limited
4131 // is set to false here to make cwnd grow when ACK is received.
4132 path.recovery.update_app_limited(false);
4133 return Err(Error::Done);
4134 },
4135 }
4136
4137 // Make sure there is enough space for the minimum payload length.
4138 if left < PAYLOAD_MIN_LEN {
4139 path.recovery.update_app_limited(false);
4140 return Err(Error::Done);
4141 }
4142
4143 let mut frames: SmallVec<[frame::Frame; 1]> = SmallVec::new();
4144
4145 let mut ack_eliciting = false;
4146 let mut in_flight = false;
4147 let mut is_pmtud_probe = false;
4148 let mut has_data = false;
4149
4150 // Whether or not we should explicitly elicit an ACK via PING frame if we
4151 // implicitly elicit one otherwise.
4152 let ack_elicit_required = path.recovery.should_elicit_ack(epoch);
4153
4154 let header_offset = b.off();
4155
4156 // Reserve space for payload length in advance. Since we don't yet know
4157 // what the final length will be, we reserve 2 bytes in all cases.
4158 //
4159 // Only long header packets have an explicit length field.
4160 if pkt_type != Type::Short {
4161 b.skip(PAYLOAD_LENGTH_LEN)?;
4162 }
4163
4164 packet::encode_pkt_num(pn, pn_len, &mut b)?;
4165
4166 let payload_offset = b.off();
4167
4168 let cwnd_available =
4169 path.recovery.cwnd_available().saturating_sub(overhead);
4170
4171 let left_before_packing_ack_frame = left;
4172
4173 // Create ACK frame.
4174 //
4175 // When we need to explicitly elicit an ACK via PING later, go ahead and
4176 // generate an ACK (if there's anything to ACK) since we're going to
4177 // send a packet with PING anyways, even if we haven't received anything
4178 // ACK eliciting.
4179 if pkt_space.recv_pkt_need_ack.len() > 0 &&
4180 (pkt_space.ack_elicited || ack_elicit_required) &&
4181 (!is_closing ||
4182 (pkt_type == Type::Handshake &&
4183 self.local_error
4184 .as_ref()
4185 .is_some_and(|le| le.is_app))) &&
4186 path.active()
4187 {
4188 #[cfg(not(feature = "fuzzing"))]
4189 let ack_delay = pkt_space.largest_rx_pkt_time.elapsed();
4190
4191 #[cfg(not(feature = "fuzzing"))]
4192 let ack_delay = ack_delay.as_micros() as u64 /
4193 2_u64
4194 .pow(self.local_transport_params.ack_delay_exponent as u32);
4195
4196 // pseudo-random reproducible ack delays when fuzzing
4197 #[cfg(feature = "fuzzing")]
4198 let ack_delay = rand::rand_u8() as u64 + 1;
4199
4200 let frame = frame::Frame::ACK {
4201 ack_delay,
4202 ranges: pkt_space.recv_pkt_need_ack.clone(),
4203 ecn_counts: None, // sending ECN is not supported at this time
4204 };
4205
4206 // When a PING frame needs to be sent, avoid sending the ACK if
4207 // there is not enough cwnd available for both (note that PING
4208 // frames are always 1 byte, so we just need to check that the
4209 // ACK's length is lower than cwnd).
4210 if pkt_space.ack_elicited || frame.wire_len() < cwnd_available {
4211 // ACK-only packets are not congestion controlled so ACKs must
4212 // be bundled considering the buffer capacity only, and not the
4213 // available cwnd.
4214 if push_frame_to_pkt!(b, frames, frame, left) {
4215 pkt_space.ack_elicited = false;
4216 }
4217 }
4218 }
4219
4220 // Limit output packet size by congestion window size.
4221 left = cmp::min(
4222 left,
4223 // Bytes consumed by ACK frames.
4224 cwnd_available.saturating_sub(left_before_packing_ack_frame - left),
4225 );
4226
4227 let mut challenge_data = None;
4228
4229 let active_path = self.paths.get_active_mut()?;
4230
4231 if pkt_type == Type::Short {
4232 // Create PMTUD probe.
4233 //
4234 // In order to send a PMTUD probe the current `left` value, which was
4235 // already limited by the current PMTU measure, needs to be ignored,
4236 // but the outgoing packet still needs to be limited by
4237 // the output buffer size, as well as the congestion
4238 // window.
4239 //
4240 // In addition, the PMTUD probe is only generated when the handshake
4241 // is confirmed, to avoid interfering with the handshake
4242 // (e.g. due to the anti-amplification limits).
4243 let should_probe_pmtu = active_path.should_send_pmtu_probe(
4244 self.handshake_confirmed,
4245 self.handshake_completed,
4246 out_len,
4247 is_closing,
4248 frames.is_empty(),
4249 );
4250
4251 if should_probe_pmtu {
4252 if let Some(pmtud) = active_path.pmtud.as_mut() {
4253 let probe_size = pmtud.get_probe_size();
4254 trace!(
4255 "{} sending pmtud probe pmtu_probe={} estimated_pmtu={}",
4256 self.trace_id,
4257 probe_size,
4258 pmtud.get_current_mtu(),
4259 );
4260
4261 left = probe_size;
4262
4263 match left.checked_sub(overhead) {
4264 Some(v) => left = v,
4265
4266 None => {
4267 // We can't send more because there isn't enough space
4268 // available in the output buffer.
4269 //
4270 // This usually happens when we try to send a new
4271 // packet but failed
4272 // because cwnd is almost full.
4273 //
4274 // In such case app_limited is set to false here to
4275 // make cwnd grow when ACK
4276 // is received.
4277 active_path.recovery.update_app_limited(false);
4278 return Err(Error::Done);
4279 },
4280 }
4281
4282 let frame = frame::Frame::Padding {
4283 len: probe_size - overhead - 1,
4284 };
4285
4286 if push_frame_to_pkt!(b, frames, frame, left) {
4287 let frame = frame::Frame::Ping {
4288 mtu_probe: Some(probe_size),
4289 };
4290
4291 if push_frame_to_pkt!(b, frames, frame, left) {
4292 ack_eliciting = true;
4293 in_flight = true;
4294 }
4295 }
4296
4297 // Reset probe flag after sending to prevent duplicate probes
4298 // in a single flight.
4299 pmtud.set_in_flight(true);
4300 is_pmtud_probe = true;
4301 }
4302 }
4303
4304 let path = self.paths.get_mut(send_pid)?;
4305 // Create PATH_RESPONSE frame if needed.
4306 // We do not try to ensure that these are really sent.
4307 while let Some(challenge) = path.pop_received_challenge() {
4308 let frame = frame::Frame::PathResponse { data: challenge };
4309
4310 if push_frame_to_pkt!(b, frames, frame, left) {
4311 ack_eliciting = true;
4312 in_flight = true;
4313 } else {
4314 // If there are other pending PATH_RESPONSE, don't lose them
4315 // now.
4316 break;
4317 }
4318 }
4319
4320 // Create PATH_CHALLENGE frame if needed.
4321 if path.validation_requested() {
4322 // TODO: ensure that data is unique over paths.
4323 let data = rand::rand_u64().to_be_bytes();
4324
4325 let frame = frame::Frame::PathChallenge { data };
4326
4327 if push_frame_to_pkt!(b, frames, frame, left) {
4328 // Let's notify the path once we know the packet size.
4329 challenge_data = Some(data);
4330
4331 ack_eliciting = true;
4332 in_flight = true;
4333 }
4334 }
4335
4336 if let Some(key_update) = crypto_ctx.key_update.as_mut() {
4337 key_update.update_acked = true;
4338 }
4339 }
4340
4341 let path = self.paths.get_mut(send_pid)?;
4342
4343 if pkt_type == Type::Short && !is_closing {
4344 // Create NEW_CONNECTION_ID frames as needed.
4345 while let Some(seq_num) = self.ids.next_advertise_new_scid_seq() {
4346 let frame = self.ids.get_new_connection_id_frame_for(seq_num)?;
4347
4348 if push_frame_to_pkt!(b, frames, frame, left) {
4349 self.ids.mark_advertise_new_scid_seq(seq_num, false);
4350
4351 ack_eliciting = true;
4352 in_flight = true;
4353 } else {
4354 break;
4355 }
4356 }
4357 }
4358
4359 if pkt_type == Type::Short && !is_closing && path.active() {
4360 // Create HANDSHAKE_DONE frame.
4361 // self.should_send_handshake_done() but without the need to borrow
4362 if self.handshake_completed &&
4363 !self.handshake_done_sent &&
4364 self.is_server
4365 {
4366 let frame = frame::Frame::HandshakeDone;
4367
4368 if push_frame_to_pkt!(b, frames, frame, left) {
4369 self.handshake_done_sent = true;
4370
4371 ack_eliciting = true;
4372 in_flight = true;
4373 }
4374 }
4375
4376 // Create MAX_STREAMS_BIDI frame.
4377 if self.streams.should_update_max_streams_bidi() {
4378 let frame = frame::Frame::MaxStreamsBidi {
4379 max: self.streams.max_streams_bidi_next(),
4380 };
4381
4382 if push_frame_to_pkt!(b, frames, frame, left) {
4383 self.streams.update_max_streams_bidi();
4384
4385 ack_eliciting = true;
4386 in_flight = true;
4387 }
4388 }
4389
4390 // Create MAX_STREAMS_UNI frame.
4391 if self.streams.should_update_max_streams_uni() {
4392 let frame = frame::Frame::MaxStreamsUni {
4393 max: self.streams.max_streams_uni_next(),
4394 };
4395
4396 if push_frame_to_pkt!(b, frames, frame, left) {
4397 self.streams.update_max_streams_uni();
4398
4399 ack_eliciting = true;
4400 in_flight = true;
4401 }
4402 }
4403
4404 // Create DATA_BLOCKED frame.
4405 if let Some(limit) = self.blocked_limit {
4406 let frame = frame::Frame::DataBlocked { limit };
4407
4408 if push_frame_to_pkt!(b, frames, frame, left) {
4409 self.blocked_limit = None;
4410 self.data_blocked_sent_count =
4411 self.data_blocked_sent_count.saturating_add(1);
4412
4413 ack_eliciting = true;
4414 in_flight = true;
4415 }
4416 }
4417
4418 // Create MAX_STREAM_DATA frames as needed.
4419 for stream_id in self.streams.almost_full() {
4420 let stream = match self.streams.get_mut(stream_id) {
4421 Some(v) => v,
4422
4423 None => {
4424 // The stream doesn't exist anymore, so remove it from
4425 // the almost full set.
4426 self.streams.remove_almost_full(stream_id);
4427 continue;
4428 },
4429 };
4430
4431 // Autotune the stream window size.
4432 stream.recv.autotune_window(now, path.recovery.rtt());
4433
4434 let frame = frame::Frame::MaxStreamData {
4435 stream_id,
4436 max: stream.recv.max_data_next(),
4437 };
4438
4439 if push_frame_to_pkt!(b, frames, frame, left) {
4440 let recv_win = stream.recv.window();
4441
4442 stream.recv.update_max_data(now);
4443
4444 self.streams.remove_almost_full(stream_id);
4445
4446 ack_eliciting = true;
4447 in_flight = true;
4448
4449 // Make sure the connection window always has some
4450 // room compared to the stream window.
4451 flow_control.ensure_window_lower_bound(
4452 (recv_win as f64 * CONNECTION_WINDOW_FACTOR) as u64,
4453 );
4454
4455 // Also send MAX_DATA when MAX_STREAM_DATA is sent, to avoid a
4456 // potential race condition.
4457 self.almost_full = true;
4458 }
4459 }
4460
4461 // Create MAX_DATA frame as needed.
4462 if self.almost_full &&
4463 flow_control.max_data() < flow_control.max_data_next()
4464 {
4465 // Autotune the connection window size.
4466 flow_control.autotune_window(now, path.recovery.rtt());
4467
4468 let frame = frame::Frame::MaxData {
4469 max: flow_control.max_data_next(),
4470 };
4471
4472 if push_frame_to_pkt!(b, frames, frame, left) {
4473 self.almost_full = false;
4474
4475 // Commits the new max_rx_data limit.
4476 flow_control.update_max_data(now);
4477
4478 ack_eliciting = true;
4479 in_flight = true;
4480 }
4481 }
4482
4483 // Create STOP_SENDING frames as needed.
4484 for (stream_id, error_code) in self
4485 .streams
4486 .stopped()
4487 .map(|(&k, &v)| (k, v))
4488 .collect::<Vec<(u64, u64)>>()
4489 {
4490 let frame = frame::Frame::StopSending {
4491 stream_id,
4492 error_code,
4493 };
4494
4495 if push_frame_to_pkt!(b, frames, frame, left) {
4496 self.streams.remove_stopped(stream_id);
4497
4498 ack_eliciting = true;
4499 in_flight = true;
4500 }
4501 }
4502
4503 // Create RESET_STREAM frames as needed.
4504 for (stream_id, (error_code, final_size)) in self
4505 .streams
4506 .reset()
4507 .map(|(&k, &v)| (k, v))
4508 .collect::<Vec<(u64, (u64, u64))>>()
4509 {
4510 let frame = frame::Frame::ResetStream {
4511 stream_id,
4512 error_code,
4513 final_size,
4514 };
4515
4516 if push_frame_to_pkt!(b, frames, frame, left) {
4517 self.streams.remove_reset(stream_id);
4518
4519 ack_eliciting = true;
4520 in_flight = true;
4521 }
4522 }
4523
4524 // Create STREAM_DATA_BLOCKED frames as needed.
4525 for (stream_id, limit) in self
4526 .streams
4527 .blocked()
4528 .map(|(&k, &v)| (k, v))
4529 .collect::<Vec<(u64, u64)>>()
4530 {
4531 let frame = frame::Frame::StreamDataBlocked { stream_id, limit };
4532
4533 if push_frame_to_pkt!(b, frames, frame, left) {
4534 self.streams.remove_blocked(stream_id);
4535 self.stream_data_blocked_sent_count =
4536 self.stream_data_blocked_sent_count.saturating_add(1);
4537
4538 ack_eliciting = true;
4539 in_flight = true;
4540 }
4541 }
4542
4543 // Create RETIRE_CONNECTION_ID frames as needed.
4544 let retire_dcid_seqs = self.ids.retire_dcid_seqs();
4545
4546 for seq_num in retire_dcid_seqs {
4547 // The sequence number specified in a RETIRE_CONNECTION_ID frame
4548 // MUST NOT refer to the Destination Connection ID field of the
4549 // packet in which the frame is contained.
4550 let dcid_seq = path.active_dcid_seq.ok_or(Error::InvalidState)?;
4551
4552 if seq_num == dcid_seq {
4553 continue;
4554 }
4555
4556 let frame = frame::Frame::RetireConnectionId { seq_num };
4557
4558 if push_frame_to_pkt!(b, frames, frame, left) {
4559 self.ids.mark_retire_dcid_seq(seq_num, false)?;
4560
4561 ack_eliciting = true;
4562 in_flight = true;
4563 } else {
4564 break;
4565 }
4566 }
4567 }
4568
4569 // Create CONNECTION_CLOSE frame. Try to send this only on the active
4570 // path, unless it is the last one available.
4571 if path.active() || n_paths == 1 {
4572 if let Some(conn_err) = self.local_error.as_ref() {
4573 if conn_err.is_app {
4574 // Create ApplicationClose frame.
4575 if pkt_type == Type::Short {
4576 let frame = frame::Frame::ApplicationClose {
4577 error_code: conn_err.error_code,
4578 reason: conn_err.reason.clone(),
4579 };
4580
4581 if push_frame_to_pkt!(b, frames, frame, left) {
4582 let pto = path.recovery.pto();
4583 self.draining_timer = Some(now + (pto * 3));
4584
4585 ack_eliciting = true;
4586 in_flight = true;
4587 }
4588 }
4589 } else {
4590 // Create ConnectionClose frame.
4591 let frame = frame::Frame::ConnectionClose {
4592 error_code: conn_err.error_code,
4593 frame_type: 0,
4594 reason: conn_err.reason.clone(),
4595 };
4596
4597 if push_frame_to_pkt!(b, frames, frame, left) {
4598 let pto = path.recovery.pto();
4599 self.draining_timer = Some(now + (pto * 3));
4600
4601 ack_eliciting = true;
4602 in_flight = true;
4603 }
4604 }
4605 }
4606 }
4607
4608 // Create CRYPTO frame.
4609 if crypto_ctx.crypto_stream.is_flushable() &&
4610 left > frame::MAX_CRYPTO_OVERHEAD &&
4611 !is_closing &&
4612 path.active()
4613 {
4614 let crypto_off = crypto_ctx.crypto_stream.send.off_front();
4615
4616 // Encode the frame.
4617 //
4618 // Instead of creating a `frame::Frame` object, encode the frame
4619 // directly into the packet buffer.
4620 //
4621 // First we reserve some space in the output buffer for writing the
4622 // frame header (we assume the length field is always a 2-byte
4623 // varint as we don't know the value yet).
4624 //
4625 // Then we emit the data from the crypto stream's send buffer.
4626 //
4627 // Finally we go back and encode the frame header with the now
4628 // available information.
4629 let hdr_off = b.off();
4630 let hdr_len = 1 + // frame type
4631 octets::varint_len(crypto_off) + // offset
4632 2; // length, always encode as 2-byte varint
4633
4634 if let Some(max_len) = left.checked_sub(hdr_len) {
4635 let (mut crypto_hdr, mut crypto_payload) =
4636 b.split_at(hdr_off + hdr_len)?;
4637
4638 // Write stream data into the packet buffer.
4639 let (len, _) = crypto_ctx
4640 .crypto_stream
4641 .send
4642 .emit(&mut crypto_payload.as_mut()[..max_len])?;
4643
4644 // Encode the frame's header.
4645 //
4646 // Due to how `OctetsMut::split_at()` works, `crypto_hdr` starts
4647 // from the initial offset of `b` (rather than the current
4648 // offset), so it needs to be advanced to the
4649 // initial frame offset.
4650 crypto_hdr.skip(hdr_off)?;
4651
4652 frame::encode_crypto_header(
4653 crypto_off,
4654 len as u64,
4655 &mut crypto_hdr,
4656 )?;
4657
4658 // Advance the packet buffer's offset.
4659 b.skip(hdr_len + len)?;
4660
4661 let frame = frame::Frame::CryptoHeader {
4662 offset: crypto_off,
4663 length: len,
4664 };
4665
4666 if push_frame_to_pkt!(b, frames, frame, left) {
4667 ack_eliciting = true;
4668 in_flight = true;
4669 has_data = true;
4670 }
4671 }
4672 }
4673
4674 // The preference of data-bearing frame to include in a packet
4675 // is managed by `self.emit_dgram`. However, whether any frames
4676 // can be sent depends on the state of their buffers. In the case
4677 // where one type is preferred but its buffer is empty, fall back
4678 // to the other type in order not to waste this function call.
4679 let mut dgram_emitted = false;
4680 let dgrams_to_emit = max_dgram_len.is_some();
4681 let stream_to_emit = self.streams.has_flushable();
4682
4683 let mut do_dgram = self.emit_dgram && dgrams_to_emit;
4684 let do_stream = !self.emit_dgram && stream_to_emit;
4685
4686 if !do_stream && dgrams_to_emit {
4687 do_dgram = true;
4688 }
4689
4690 // Create DATAGRAM frame.
4691 if (pkt_type == Type::Short || pkt_type == Type::ZeroRTT) &&
4692 left > frame::MAX_DGRAM_OVERHEAD &&
4693 !is_closing &&
4694 path.active() &&
4695 do_dgram
4696 {
4697 if let Some(max_dgram_payload) = max_dgram_len {
4698 while let Some(len) = self.dgram_send_queue.peek_front_len() {
4699 let hdr_off = b.off();
4700 let hdr_len = 1 + // frame type
4701 2; // length, always encode as 2-byte varint
4702
4703 if (hdr_len + len) <= left {
4704 // Front of the queue fits this packet, send it.
4705 match self.dgram_send_queue.pop() {
4706 Some(data) => {
4707 // Encode the frame.
4708 //
4709 // Instead of creating a `frame::Frame` object,
4710 // encode the frame directly into the packet
4711 // buffer.
4712 //
4713 // First we reserve some space in the output
4714 // buffer for writing the frame header (we
4715 // assume the length field is always a 2-byte
4716 // varint as we don't know the value yet).
4717 //
4718 // Then we emit the data from the DATAGRAM's
4719 // buffer.
4720 //
4721 // Finally we go back and encode the frame
4722 // header with the now available information.
4723 let (mut dgram_hdr, mut dgram_payload) =
4724 b.split_at(hdr_off + hdr_len)?;
4725
4726 dgram_payload.as_mut()[..len]
4727 .copy_from_slice(&data);
4728
4729 // Encode the frame's header.
4730 //
4731 // Due to how `OctetsMut::split_at()` works,
4732 // `dgram_hdr` starts from the initial offset
4733 // of `b` (rather than the current offset), so
4734 // it needs to be advanced to the initial frame
4735 // offset.
4736 dgram_hdr.skip(hdr_off)?;
4737
4738 frame::encode_dgram_header(
4739 len as u64,
4740 &mut dgram_hdr,
4741 )?;
4742
4743 // Advance the packet buffer's offset.
4744 b.skip(hdr_len + len)?;
4745
4746 let frame =
4747 frame::Frame::DatagramHeader { length: len };
4748
4749 if push_frame_to_pkt!(b, frames, frame, left) {
4750 ack_eliciting = true;
4751 in_flight = true;
4752 dgram_emitted = true;
4753 self.dgram_sent_count =
4754 self.dgram_sent_count.saturating_add(1);
4755 path.dgram_sent_count =
4756 path.dgram_sent_count.saturating_add(1);
4757 }
4758 },
4759
4760 None => continue,
4761 };
4762 } else if len > max_dgram_payload {
4763 // This dgram frame will never fit. Let's purge it.
4764 self.dgram_send_queue.pop();
4765 } else {
4766 break;
4767 }
4768 }
4769 }
4770 }
4771
4772 // Create a single STREAM frame for the first stream that is flushable.
4773 if (pkt_type == Type::Short || pkt_type == Type::ZeroRTT) &&
4774 left > frame::MAX_STREAM_OVERHEAD &&
4775 !is_closing &&
4776 path.active() &&
4777 !dgram_emitted
4778 {
4779 while let Some(priority_key) = self.streams.peek_flushable() {
4780 let stream_id = priority_key.id;
4781 let stream = match self.streams.get_mut(stream_id) {
4782 // Avoid sending frames for streams that were already stopped.
4783 //
4784 // This might happen if stream data was buffered but not yet
4785 // flushed on the wire when a STOP_SENDING frame is received.
4786 Some(v) if !v.send.is_stopped() => v,
4787 _ => {
4788 self.streams.remove_flushable(&priority_key);
4789 continue;
4790 },
4791 };
4792
4793 let stream_off = stream.send.off_front();
4794
4795 // Encode the frame.
4796 //
4797 // Instead of creating a `frame::Frame` object, encode the frame
4798 // directly into the packet buffer.
4799 //
4800 // First we reserve some space in the output buffer for writing
4801 // the frame header (we assume the length field is always a
4802 // 2-byte varint as we don't know the value yet).
4803 //
4804 // Then we emit the data from the stream's send buffer.
4805 //
4806 // Finally we go back and encode the frame header with the now
4807 // available information.
4808 let hdr_off = b.off();
4809 let hdr_len = 1 + // frame type
4810 octets::varint_len(stream_id) + // stream_id
4811 octets::varint_len(stream_off) + // offset
4812 2; // length, always encode as 2-byte varint
4813
4814 let max_len = match left.checked_sub(hdr_len) {
4815 Some(v) => v,
4816 None => {
4817 let priority_key = Arc::clone(&stream.priority_key);
4818 self.streams.remove_flushable(&priority_key);
4819
4820 continue;
4821 },
4822 };
4823
4824 let (mut stream_hdr, mut stream_payload) =
4825 b.split_at(hdr_off + hdr_len)?;
4826
4827 // Write stream data into the packet buffer.
4828 let (len, fin) =
4829 stream.send.emit(&mut stream_payload.as_mut()[..max_len])?;
4830
4831 // Encode the frame's header.
4832 //
4833 // Due to how `OctetsMut::split_at()` works, `stream_hdr` starts
4834 // from the initial offset of `b` (rather than the current
4835 // offset), so it needs to be advanced to the initial frame
4836 // offset.
4837 stream_hdr.skip(hdr_off)?;
4838
4839 frame::encode_stream_header(
4840 stream_id,
4841 stream_off,
4842 len as u64,
4843 fin,
4844 &mut stream_hdr,
4845 )?;
4846
4847 // Advance the packet buffer's offset.
4848 b.skip(hdr_len + len)?;
4849
4850 let frame = frame::Frame::StreamHeader {
4851 stream_id,
4852 offset: stream_off,
4853 length: len,
4854 fin,
4855 };
4856
4857 if push_frame_to_pkt!(b, frames, frame, left) {
4858 ack_eliciting = true;
4859 in_flight = true;
4860 has_data = true;
4861 }
4862
4863 let priority_key = Arc::clone(&stream.priority_key);
4864 // If the stream is no longer flushable, remove it from the queue
4865 if !stream.is_flushable() {
4866 self.streams.remove_flushable(&priority_key);
4867 } else if stream.incremental {
4868 // Shuffle the incremental stream to the back of the
4869 // queue.
4870 self.streams.remove_flushable(&priority_key);
4871 self.streams.insert_flushable(&priority_key);
4872 }
4873
4874 #[cfg(feature = "fuzzing")]
4875 // Coalesce STREAM frames when fuzzing.
4876 if left > frame::MAX_STREAM_OVERHEAD {
4877 continue;
4878 }
4879
4880 break;
4881 }
4882 }
4883
4884 // Alternate trying to send DATAGRAMs next time.
4885 self.emit_dgram = !dgram_emitted;
4886
4887 // If no other ack-eliciting frame is sent, include a PING frame
4888 // - if PTO probe needed; OR
4889 // - if we've sent too many non ack-eliciting packets without having
4890 // sent an ACK eliciting one; OR
4891 // - the application requested an ack-eliciting frame be sent.
4892 if (ack_elicit_required || path.needs_ack_eliciting) &&
4893 !ack_eliciting &&
4894 left >= 1 &&
4895 !is_closing
4896 {
4897 let frame = frame::Frame::Ping { mtu_probe: None };
4898
4899 if push_frame_to_pkt!(b, frames, frame, left) {
4900 ack_eliciting = true;
4901 in_flight = true;
4902 }
4903 }
4904
4905 if ack_eliciting && !is_pmtud_probe {
4906 path.needs_ack_eliciting = false;
4907 path.recovery.ping_sent(epoch);
4908 }
4909
4910 if !has_data &&
4911 !dgram_emitted &&
4912 cwnd_available > frame::MAX_STREAM_OVERHEAD
4913 {
4914 path.recovery.on_app_limited();
4915 }
4916
4917 if frames.is_empty() {
4918 // When we reach this point we are not able to write more, so set
4919 // app_limited to false.
4920 path.recovery.update_app_limited(false);
4921 return Err(Error::Done);
4922 }
4923
4924 // When coalescing a 1-RTT packet, we can't add padding in the UDP
4925 // datagram, so use PADDING frames instead.
4926 //
4927 // This is only needed if
4928 // 1) an Initial packet has already been written to the UDP datagram,
4929 // as Initial always requires padding.
4930 //
4931 // 2) this is a probing packet towards an unvalidated peer address.
4932 if (has_initial || !path.validated()) &&
4933 pkt_type == Type::Short &&
4934 left >= 1
4935 {
4936 let frame = frame::Frame::Padding { len: left };
4937
4938 if push_frame_to_pkt!(b, frames, frame, left) {
4939 in_flight = true;
4940 }
4941 }
4942
4943 // Pad payload so that it's always at least 4 bytes.
4944 if b.off() - payload_offset < PAYLOAD_MIN_LEN {
4945 let payload_len = b.off() - payload_offset;
4946
4947 let frame = frame::Frame::Padding {
4948 len: PAYLOAD_MIN_LEN - payload_len,
4949 };
4950
4951 #[allow(unused_assignments)]
4952 if push_frame_to_pkt!(b, frames, frame, left) {
4953 in_flight = true;
4954 }
4955 }
4956
4957 let payload_len = b.off() - payload_offset;
4958
4959 // Fill in payload length.
4960 if pkt_type != Type::Short {
4961 let len = pn_len + payload_len + crypto_overhead;
4962
4963 let (_, mut payload_with_len) = b.split_at(header_offset)?;
4964 payload_with_len
4965 .put_varint_with_len(len as u64, PAYLOAD_LENGTH_LEN)?;
4966 }
4967
4968 trace!(
4969 "{} tx pkt {} len={} pn={} {}",
4970 self.trace_id,
4971 hdr_trace.unwrap_or_default(),
4972 payload_len,
4973 pn,
4974 AddrTupleFmt(path.local_addr(), path.peer_addr())
4975 );
4976
4977 #[cfg(feature = "qlog")]
4978 let mut qlog_frames: SmallVec<
4979 [qlog::events::quic::QuicFrame; 1],
4980 > = SmallVec::with_capacity(frames.len());
4981
4982 for frame in &mut frames {
4983 trace!("{} tx frm {:?}", self.trace_id, frame);
4984
4985 qlog_with_type!(QLOG_PACKET_TX, self.qlog, _q, {
4986 qlog_frames.push(frame.to_qlog());
4987 });
4988 }
4989
4990 qlog_with_type!(QLOG_PACKET_TX, self.qlog, q, {
4991 if let Some(header) = qlog_pkt_hdr {
4992 // Qlog packet raw info described at
4993 // https://datatracker.ietf.org/doc/html/draft-ietf-quic-qlog-main-schema-00#section-5.1
4994 //
4995 // `length` includes packet headers and trailers (AEAD tag).
4996 let length = payload_len + payload_offset + crypto_overhead;
4997 let qlog_raw_info = RawInfo {
4998 length: Some(length as u64),
4999 payload_length: Some(payload_len as u64),
5000 data: None,
5001 };
5002
5003 let send_at_time =
5004 now.duration_since(q.start_time()).as_secs_f32() * 1000.0;
5005
5006 let ev_data =
5007 EventData::PacketSent(qlog::events::quic::PacketSent {
5008 header,
5009 frames: Some(qlog_frames),
5010 raw: Some(qlog_raw_info),
5011 send_at_time: Some(send_at_time),
5012 ..Default::default()
5013 });
5014
5015 q.add_event_data_with_instant(ev_data, now).ok();
5016 }
5017 });
5018
5019 let aead = match crypto_ctx.crypto_seal {
5020 Some(ref v) => v,
5021 None => return Err(Error::InvalidState),
5022 };
5023
5024 let written = packet::encrypt_pkt(
5025 &mut b,
5026 pn,
5027 pn_len,
5028 payload_len,
5029 payload_offset,
5030 None,
5031 aead,
5032 )?;
5033
5034 let sent_pkt_has_data = if path.recovery.gcongestion_enabled() {
5035 has_data || dgram_emitted
5036 } else {
5037 has_data
5038 };
5039
5040 let sent_pkt = recovery::Sent {
5041 pkt_num: pn,
5042 frames,
5043 time_sent: now,
5044 time_acked: None,
5045 time_lost: None,
5046 size: if ack_eliciting { written } else { 0 },
5047 ack_eliciting,
5048 in_flight,
5049 delivered: 0,
5050 delivered_time: now,
5051 first_sent_time: now,
5052 is_app_limited: false,
5053 tx_in_flight: 0,
5054 lost: 0,
5055 has_data: sent_pkt_has_data,
5056 is_pmtud_probe,
5057 };
5058
5059 if in_flight && is_app_limited {
5060 path.recovery.delivery_rate_update_app_limited(true);
5061 }
5062
5063 self.next_pkt_num += 1;
5064
5065 let handshake_status = recovery::HandshakeStatus {
5066 has_handshake_keys: self.crypto_ctx[packet::Epoch::Handshake]
5067 .has_keys(),
5068 peer_verified_address: self.peer_verified_initial_address,
5069 completed: self.handshake_completed,
5070 };
5071
5072 self.on_packet_sent(send_pid, sent_pkt, epoch, handshake_status, now)?;
5073
5074 let path = self.paths.get_mut(send_pid)?;
5075 qlog_with_type!(QLOG_METRICS, self.qlog, q, {
5076 path.recovery.maybe_qlog(q, now);
5077 });
5078
5079 // Record sent packet size if we probe the path.
5080 if let Some(data) = challenge_data {
5081 path.add_challenge_sent(data, written, now);
5082 }
5083
5084 self.sent_count += 1;
5085 self.sent_bytes += written as u64;
5086 path.sent_count += 1;
5087 path.sent_bytes += written as u64;
5088
5089 if self.dgram_send_queue.byte_size() > path.recovery.cwnd_available() {
5090 path.recovery.update_app_limited(false);
5091 }
5092
5093 path.max_send_bytes = path.max_send_bytes.saturating_sub(written);
5094
5095 // On the client, drop initial state after sending an Handshake packet.
5096 if !self.is_server && hdr_ty == Type::Handshake {
5097 self.drop_epoch_state(packet::Epoch::Initial, now);
5098 }
5099
5100 // (Re)start the idle timer if we are sending the first ack-eliciting
5101 // packet since last receiving a packet.
5102 if ack_eliciting && !self.ack_eliciting_sent {
5103 if let Some(idle_timeout) = self.idle_timeout() {
5104 self.idle_timer = Some(now + idle_timeout);
5105 }
5106 }
5107
5108 if ack_eliciting {
5109 self.ack_eliciting_sent = true;
5110 }
5111
5112 Ok((pkt_type, written))
5113 }
5114
5115 fn on_packet_sent(
5116 &mut self, send_pid: usize, sent_pkt: recovery::Sent,
5117 epoch: packet::Epoch, handshake_status: recovery::HandshakeStatus,
5118 now: Instant,
5119 ) -> Result<()> {
5120 let path = self.paths.get_mut(send_pid)?;
5121
5122 // It's fine to set the skip counter based on a non-active path's values.
5123 let cwnd = path.recovery.cwnd();
5124 let max_datagram_size = path.recovery.max_datagram_size();
5125 self.pkt_num_spaces[epoch].on_packet_sent(&sent_pkt);
5126 self.pkt_num_manager.on_packet_sent(
5127 cwnd,
5128 max_datagram_size,
5129 self.handshake_completed,
5130 );
5131
5132 path.recovery.on_packet_sent(
5133 sent_pkt,
5134 epoch,
5135 handshake_status,
5136 now,
5137 &self.trace_id,
5138 );
5139
5140 Ok(())
5141 }
5142
5143 /// Returns the desired send time for the next packet.
5144 #[inline]
5145 pub fn get_next_release_time(&self) -> Option<ReleaseDecision> {
5146 Some(
5147 self.paths
5148 .get_active()
5149 .ok()?
5150 .recovery
5151 .get_next_release_time(),
5152 )
5153 }
5154
5155 /// Returns whether gcongestion is enabled.
5156 #[inline]
5157 pub fn gcongestion_enabled(&self) -> Option<bool> {
5158 Some(self.paths.get_active().ok()?.recovery.gcongestion_enabled())
5159 }
5160
5161 /// Returns the maximum pacing into the future.
5162 ///
5163 /// Equals 1/8 of the smoothed RTT, but at least 1ms and not greater than
5164 /// 5ms.
5165 pub fn max_release_into_future(&self) -> Duration {
5166 self.paths
5167 .get_active()
5168 .map(|p| p.recovery.rtt().mul_f64(0.125))
5169 .unwrap_or(Duration::from_millis(1))
5170 .max(Duration::from_millis(1))
5171 .min(Duration::from_millis(5))
5172 }
5173
5174 /// Returns whether pacing is enabled.
5175 #[inline]
5176 pub fn pacing_enabled(&self) -> bool {
5177 self.recovery_config.pacing
5178 }
5179
5180 /// Returns the size of the send quantum, in bytes.
5181 ///
5182 /// This represents the maximum size of a packet burst as determined by the
5183 /// congestion control algorithm in use.
5184 ///
5185 /// Applications can, for example, use it in conjunction with segmentation
5186 /// offloading mechanisms as the maximum limit for outgoing aggregates of
5187 /// multiple packets.
5188 #[inline]
5189 pub fn send_quantum(&self) -> usize {
5190 match self.paths.get_active() {
5191 Ok(p) => p.recovery.send_quantum(),
5192 _ => 0,
5193 }
5194 }
5195
5196 /// Returns the size of the send quantum over the given 4-tuple, in bytes.
5197 ///
5198 /// This represents the maximum size of a packet burst as determined by the
5199 /// congestion control algorithm in use.
5200 ///
5201 /// Applications can, for example, use it in conjunction with segmentation
5202 /// offloading mechanisms as the maximum limit for outgoing aggregates of
5203 /// multiple packets.
5204 ///
5205 /// If the (`local_addr`, peer_addr`) 4-tuple relates to a non-existing
5206 /// path, this method returns 0.
5207 pub fn send_quantum_on_path(
5208 &self, local_addr: SocketAddr, peer_addr: SocketAddr,
5209 ) -> usize {
5210 self.paths
5211 .path_id_from_addrs(&(local_addr, peer_addr))
5212 .and_then(|pid| self.paths.get(pid).ok())
5213 .map(|path| path.recovery.send_quantum())
5214 .unwrap_or(0)
5215 }
5216
5217 /// Reads contiguous data from a stream into the provided slice.
5218 ///
5219 /// The slice must be sized by the caller and will be populated up to its
5220 /// capacity.
5221 ///
5222 /// On success the amount of bytes read and a flag indicating the fin state
5223 /// is returned as a tuple, or [`Done`] if there is no data to read.
5224 ///
5225 /// Reading data from a stream may trigger queueing of control messages
5226 /// (e.g. MAX_STREAM_DATA). [`send()`] should be called afterwards.
5227 ///
5228 /// [`Done`]: enum.Error.html#variant.Done
5229 /// [`send()`]: struct.Connection.html#method.send
5230 ///
5231 /// ## Examples:
5232 ///
5233 /// ```no_run
5234 /// # let mut buf = [0; 512];
5235 /// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
5236 /// # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
5237 /// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
5238 /// # let peer = "127.0.0.1:1234".parse().unwrap();
5239 /// # let local = socket.local_addr().unwrap();
5240 /// # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
5241 /// # let stream_id = 0;
5242 /// while let Ok((read, fin)) = conn.stream_recv(stream_id, &mut buf) {
5243 /// println!("Got {} bytes on stream {}", read, stream_id);
5244 /// }
5245 /// # Ok::<(), quiche::Error>(())
5246 /// ```
5247 pub fn stream_recv(
5248 &mut self, stream_id: u64, out: &mut [u8],
5249 ) -> Result<(usize, bool)> {
5250 self.do_stream_recv(stream_id, RecvAction::Emit { out })
5251 }
5252
5253 /// Discard contiguous data from a stream without copying.
5254 ///
5255 /// On success the amount of bytes discarded and a flag indicating the fin
5256 /// state is returned as a tuple, or [`Done`] if there is no data to
5257 /// discard.
5258 ///
5259 /// Discarding data from a stream may trigger queueing of control messages
5260 /// (e.g. MAX_STREAM_DATA). [`send()`] should be called afterwards.
5261 ///
5262 /// [`Done`]: enum.Error.html#variant.Done
5263 /// [`send()`]: struct.Connection.html#method.send
5264 ///
5265 /// ## Examples:
5266 ///
5267 /// ```no_run
5268 /// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
5269 /// # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
5270 /// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
5271 /// # let peer = "127.0.0.1:1234".parse().unwrap();
5272 /// # let local = socket.local_addr().unwrap();
5273 /// # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
5274 /// # let stream_id = 0;
5275 /// while let Ok((read, fin)) = conn.stream_discard(stream_id, 1) {
5276 /// println!("Discarded {} byte(s) on stream {}", read, stream_id);
5277 /// }
5278 /// # Ok::<(), quiche::Error>(())
5279 /// ```
5280 pub fn stream_discard(
5281 &mut self, stream_id: u64, len: usize,
5282 ) -> Result<(usize, bool)> {
5283 self.do_stream_recv(stream_id, RecvAction::Discard { len })
5284 }
5285
5286 // Reads or discards contiguous data from a stream.
5287 //
5288 // Passing an `action` of `StreamRecvAction::Emit` results in a read into
5289 // the provided slice. It must be sized by the caller and will be populated
5290 // up to its capacity.
5291 //
5292 // Passing an `action` of `StreamRecvAction::Discard` results in discard up
5293 // to the indicated length.
5294 //
5295 // On success the amount of bytes read or discarded, and a flag indicating
5296 // the fin state, is returned as a tuple, or [`Done`] if there is no data to
5297 // read or discard.
5298 //
5299 // Reading or discarding data from a stream may trigger queueing of control
5300 // messages (e.g. MAX_STREAM_DATA). [`send()`] should be called afterwards.
5301 //
5302 // [`Done`]: enum.Error.html#variant.Done
5303 // [`send()`]: struct.Connection.html#method.send
5304 fn do_stream_recv(
5305 &mut self, stream_id: u64, action: RecvAction,
5306 ) -> Result<(usize, bool)> {
5307 // We can't read on our own unidirectional streams.
5308 if !stream::is_bidi(stream_id) &&
5309 stream::is_local(stream_id, self.is_server)
5310 {
5311 return Err(Error::InvalidStreamState(stream_id));
5312 }
5313
5314 let stream = self
5315 .streams
5316 .get_mut(stream_id)
5317 .ok_or(Error::InvalidStreamState(stream_id))?;
5318
5319 if !stream.is_readable() {
5320 return Err(Error::Done);
5321 }
5322
5323 let local = stream.local;
5324 let priority_key = Arc::clone(&stream.priority_key);
5325
5326 #[cfg(feature = "qlog")]
5327 let offset = stream.recv.off_front();
5328
5329 #[cfg(feature = "qlog")]
5330 let to = match action {
5331 RecvAction::Emit { .. } => Some(DataRecipient::Application),
5332
5333 RecvAction::Discard { .. } => Some(DataRecipient::Dropped),
5334 };
5335
5336 let (read, fin) = match stream.recv.emit_or_discard(action) {
5337 Ok(v) => v,
5338
5339 Err(e) => {
5340 // Collect the stream if it is now complete. This can happen if
5341 // we got a `StreamReset` error which will now be propagated to
5342 // the application, so we don't need to keep the stream's state
5343 // anymore.
5344 if stream.is_complete() {
5345 self.streams.collect(stream_id, local);
5346 }
5347
5348 self.streams.remove_readable(&priority_key);
5349 return Err(e);
5350 },
5351 };
5352
5353 self.flow_control.add_consumed(read as u64);
5354
5355 let readable = stream.is_readable();
5356
5357 let complete = stream.is_complete();
5358
5359 if stream.recv.almost_full() {
5360 self.streams.insert_almost_full(stream_id);
5361 }
5362
5363 if !readable {
5364 self.streams.remove_readable(&priority_key);
5365 }
5366
5367 if complete {
5368 self.streams.collect(stream_id, local);
5369 }
5370
5371 qlog_with_type!(QLOG_DATA_MV, self.qlog, q, {
5372 let ev_data = EventData::DataMoved(qlog::events::quic::DataMoved {
5373 stream_id: Some(stream_id),
5374 offset: Some(offset),
5375 length: Some(read as u64),
5376 from: Some(DataRecipient::Transport),
5377 to,
5378 ..Default::default()
5379 });
5380
5381 let now = Instant::now();
5382 q.add_event_data_with_instant(ev_data, now).ok();
5383 });
5384
5385 if self.should_update_max_data() {
5386 self.almost_full = true;
5387 }
5388
5389 if priority_key.incremental && readable {
5390 // Shuffle the incremental stream to the back of the queue.
5391 self.streams.remove_readable(&priority_key);
5392 self.streams.insert_readable(&priority_key);
5393 }
5394
5395 Ok((read, fin))
5396 }
5397
5398 /// Writes data to a stream.
5399 ///
5400 /// On success the number of bytes written is returned, or [`Done`] if no
5401 /// data was written (e.g. because the stream has no capacity).
5402 ///
5403 /// Applications can provide a 0-length buffer with the fin flag set to
5404 /// true. This will lead to a 0-length FIN STREAM frame being sent at the
5405 /// latest offset. The `Ok(0)` value is only returned when the application
5406 /// provided a 0-length buffer.
5407 ///
5408 /// In addition, if the peer has signalled that it doesn't want to receive
5409 /// any more data from this stream by sending the `STOP_SENDING` frame, the
5410 /// [`StreamStopped`] error will be returned instead of any data.
5411 ///
5412 /// Note that in order to avoid buffering an infinite amount of data in the
5413 /// stream's send buffer, streams are only allowed to buffer outgoing data
5414 /// up to the amount that the peer allows it to send (that is, up to the
5415 /// stream's outgoing flow control capacity).
5416 ///
5417 /// This means that the number of written bytes returned can be lower than
5418 /// the length of the input buffer when the stream doesn't have enough
5419 /// capacity for the operation to complete. The application should retry the
5420 /// operation once the stream is reported as writable again.
5421 ///
5422 /// Applications should call this method only after the handshake is
5423 /// completed (whenever [`is_established()`] returns `true`) or during
5424 /// early data if enabled (whenever [`is_in_early_data()`] returns `true`).
5425 ///
5426 /// [`Done`]: enum.Error.html#variant.Done
5427 /// [`StreamStopped`]: enum.Error.html#variant.StreamStopped
5428 /// [`is_established()`]: struct.Connection.html#method.is_established
5429 /// [`is_in_early_data()`]: struct.Connection.html#method.is_in_early_data
5430 ///
5431 /// ## Examples:
5432 ///
5433 /// ```no_run
5434 /// # let mut buf = [0; 512];
5435 /// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
5436 /// # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
5437 /// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
5438 /// # let peer = "127.0.0.1:1234".parse().unwrap();
5439 /// # let local = "127.0.0.1:4321".parse().unwrap();
5440 /// # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
5441 /// # let stream_id = 0;
5442 /// conn.stream_send(stream_id, b"hello", true)?;
5443 /// # Ok::<(), quiche::Error>(())
5444 /// ```
5445 pub fn stream_send(
5446 &mut self, stream_id: u64, buf: &[u8], fin: bool,
5447 ) -> Result<usize> {
5448 self.stream_do_send(
5449 stream_id,
5450 buf,
5451 fin,
5452 |stream: &mut stream::Stream<F>,
5453 buf: &[u8],
5454 cap: usize,
5455 fin: bool| {
5456 stream.send.write(&buf[..cap], fin).map(|v| (v, v))
5457 },
5458 )
5459 }
5460
5461 /// Writes data to a stream with zero copying, instead, it appends the
5462 /// provided buffer directly to the send queue if the capacity allows
5463 /// it.
5464 ///
5465 /// When a partial write happens (including when [`Error::Done`] is
5466 /// returned) the remaining (unwritten) buffer will also be returned.
5467 /// The application should retry the operation once the stream is
5468 /// reported as writable again.
5469 pub fn stream_send_zc(
5470 &mut self, stream_id: u64, buf: F::Buf, len: Option<usize>, fin: bool,
5471 ) -> Result<(usize, Option<F::Buf>)>
5472 where
5473 F::Buf: BufSplit,
5474 {
5475 self.stream_do_send(
5476 stream_id,
5477 buf,
5478 fin,
5479 |stream: &mut stream::Stream<F>,
5480 buf: F::Buf,
5481 cap: usize,
5482 fin: bool| {
5483 let len = len.unwrap_or(usize::MAX).min(cap);
5484 let (sent, remaining) = stream.send.append_buf(buf, len, fin)?;
5485 Ok((sent, (sent, remaining)))
5486 },
5487 )
5488 }
5489
5490 fn stream_do_send<B, R, SND>(
5491 &mut self, stream_id: u64, buf: B, fin: bool, write_fn: SND,
5492 ) -> Result<R>
5493 where
5494 B: AsRef<[u8]>,
5495 SND: FnOnce(&mut stream::Stream<F>, B, usize, bool) -> Result<(usize, R)>,
5496 {
5497 // We can't write on the peer's unidirectional streams.
5498 if !stream::is_bidi(stream_id) &&
5499 !stream::is_local(stream_id, self.is_server)
5500 {
5501 return Err(Error::InvalidStreamState(stream_id));
5502 }
5503
5504 let len = buf.as_ref().len();
5505
5506 // Mark the connection as blocked if the connection-level flow control
5507 // limit doesn't let us buffer all the data.
5508 //
5509 // Note that this is separate from "send capacity" as that also takes
5510 // congestion control into consideration.
5511 if self.max_tx_data - self.tx_data < len as u64 {
5512 self.blocked_limit = Some(self.max_tx_data);
5513 }
5514
5515 let cap = self.tx_cap;
5516
5517 // Get existing stream or create a new one.
5518 let stream = self.get_or_create_stream(stream_id, true)?;
5519
5520 #[cfg(feature = "qlog")]
5521 let offset = stream.send.off_back();
5522
5523 let was_writable = stream.is_writable();
5524
5525 let was_flushable = stream.is_flushable();
5526
5527 let is_complete = stream.is_complete();
5528 let is_readable = stream.is_readable();
5529
5530 let priority_key = Arc::clone(&stream.priority_key);
5531
5532 // Return early if the stream has been stopped, and collect its state
5533 // if complete.
5534 if let Err(Error::StreamStopped(e)) = stream.send.cap() {
5535 // Only collect the stream if it is complete and not readable.
5536 // If it is readable, it will get collected when stream_recv()
5537 // is used.
5538 //
5539 // The stream can't be writable if it has been stopped.
5540 if is_complete && !is_readable {
5541 let local = stream.local;
5542 self.streams.collect(stream_id, local);
5543 }
5544
5545 return Err(Error::StreamStopped(e));
5546 };
5547
5548 // Truncate the input buffer based on the connection's send capacity if
5549 // necessary.
5550 //
5551 // When the cap is zero, the method returns Ok(0) *only* when the passed
5552 // buffer is empty. We return Error::Done otherwise.
5553 if cap == 0 && len > 0 {
5554 if was_writable {
5555 // When `stream_writable_next()` returns a stream, the writable
5556 // mark is removed, but because the stream is blocked by the
5557 // connection-level send capacity it won't be marked as writable
5558 // again once the capacity increases.
5559 //
5560 // Since the stream is writable already, mark it here instead.
5561 self.streams.insert_writable(&priority_key);
5562 }
5563
5564 return Err(Error::Done);
5565 }
5566
5567 let (cap, fin, blocked_by_cap) = if cap < len {
5568 (cap, false, true)
5569 } else {
5570 (len, fin, false)
5571 };
5572
5573 let (sent, ret) = match write_fn(stream, buf, cap, fin) {
5574 Ok(v) => v,
5575
5576 Err(e) => {
5577 self.streams.remove_writable(&priority_key);
5578 return Err(e);
5579 },
5580 };
5581
5582 let incremental = stream.incremental;
5583 let priority_key = Arc::clone(&stream.priority_key);
5584
5585 let flushable = stream.is_flushable();
5586
5587 let writable = stream.is_writable();
5588
5589 let empty_fin = len == 0 && fin;
5590
5591 if sent < cap {
5592 let max_off = stream.send.max_off();
5593
5594 if stream.send.blocked_at() != Some(max_off) {
5595 stream.send.update_blocked_at(Some(max_off));
5596 self.streams.insert_blocked(stream_id, max_off);
5597 }
5598 } else {
5599 stream.send.update_blocked_at(None);
5600 self.streams.remove_blocked(stream_id);
5601 }
5602
5603 // If the stream is now flushable push it to the flushable queue, but
5604 // only if it wasn't already queued.
5605 //
5606 // Consider the stream flushable also when we are sending a zero-length
5607 // frame that has the fin flag set.
5608 if (flushable || empty_fin) && !was_flushable {
5609 self.streams.insert_flushable(&priority_key);
5610 }
5611
5612 if !writable {
5613 self.streams.remove_writable(&priority_key);
5614 } else if was_writable && blocked_by_cap {
5615 // When `stream_writable_next()` returns a stream, the writable
5616 // mark is removed, but because the stream is blocked by the
5617 // connection-level send capacity it won't be marked as writable
5618 // again once the capacity increases.
5619 //
5620 // Since the stream is writable already, mark it here instead.
5621 self.streams.insert_writable(&priority_key);
5622 }
5623
5624 self.tx_cap -= sent;
5625
5626 self.tx_data += sent as u64;
5627
5628 self.tx_buffered += sent;
5629 self.check_tx_buffered_invariant();
5630
5631 qlog_with_type!(QLOG_DATA_MV, self.qlog, q, {
5632 let ev_data = EventData::DataMoved(qlog::events::quic::DataMoved {
5633 stream_id: Some(stream_id),
5634 offset: Some(offset),
5635 length: Some(sent as u64),
5636 from: Some(DataRecipient::Application),
5637 to: Some(DataRecipient::Transport),
5638 ..Default::default()
5639 });
5640
5641 let now = Instant::now();
5642 q.add_event_data_with_instant(ev_data, now).ok();
5643 });
5644
5645 if sent == 0 && cap > 0 {
5646 return Err(Error::Done);
5647 }
5648
5649 if incremental && writable {
5650 // Shuffle the incremental stream to the back of the queue.
5651 self.streams.remove_writable(&priority_key);
5652 self.streams.insert_writable(&priority_key);
5653 }
5654
5655 Ok(ret)
5656 }
5657
5658 /// Sets the priority for a stream.
5659 ///
5660 /// A stream's priority determines the order in which stream data is sent
5661 /// on the wire (streams with lower priority are sent first). Streams are
5662 /// created with a default priority of `127`.
5663 ///
5664 /// The target stream is created if it did not exist before calling this
5665 /// method.
5666 pub fn stream_priority(
5667 &mut self, stream_id: u64, urgency: u8, incremental: bool,
5668 ) -> Result<()> {
5669 // Get existing stream or create a new one, but if the stream
5670 // has already been closed and collected, ignore the prioritization.
5671 let stream = match self.get_or_create_stream(stream_id, true) {
5672 Ok(v) => v,
5673
5674 Err(Error::Done) => return Ok(()),
5675
5676 Err(e) => return Err(e),
5677 };
5678
5679 if stream.urgency == urgency && stream.incremental == incremental {
5680 return Ok(());
5681 }
5682
5683 stream.urgency = urgency;
5684 stream.incremental = incremental;
5685
5686 let new_priority_key = Arc::new(StreamPriorityKey {
5687 urgency: stream.urgency,
5688 incremental: stream.incremental,
5689 id: stream_id,
5690 ..Default::default()
5691 });
5692
5693 let old_priority_key =
5694 std::mem::replace(&mut stream.priority_key, new_priority_key.clone());
5695
5696 self.streams
5697 .update_priority(&old_priority_key, &new_priority_key);
5698
5699 Ok(())
5700 }
5701
5702 /// Shuts down reading or writing from/to the specified stream.
5703 ///
5704 /// When the `direction` argument is set to [`Shutdown::Read`], outstanding
5705 /// data in the stream's receive buffer is dropped, and no additional data
5706 /// is added to it. Data received after calling this method is still
5707 /// validated and acked but not stored, and [`stream_recv()`] will not
5708 /// return it to the application. In addition, a `STOP_SENDING` frame will
5709 /// be sent to the peer to signal it to stop sending data.
5710 ///
5711 /// When the `direction` argument is set to [`Shutdown::Write`], outstanding
5712 /// data in the stream's send buffer is dropped, and no additional data is
5713 /// added to it. Data passed to [`stream_send()`] after calling this method
5714 /// will be ignored. In addition, a `RESET_STREAM` frame will be sent to the
5715 /// peer to signal the reset.
5716 ///
5717 /// Locally-initiated unidirectional streams can only be closed in the
5718 /// [`Shutdown::Write`] direction. Remotely-initiated unidirectional streams
5719 /// can only be closed in the [`Shutdown::Read`] direction. Using an
5720 /// incorrect direction will return [`InvalidStreamState`].
5721 ///
5722 /// [`Shutdown::Read`]: enum.Shutdown.html#variant.Read
5723 /// [`Shutdown::Write`]: enum.Shutdown.html#variant.Write
5724 /// [`stream_recv()`]: struct.Connection.html#method.stream_recv
5725 /// [`stream_send()`]: struct.Connection.html#method.stream_send
5726 /// [`InvalidStreamState`]: enum.Error.html#variant.InvalidStreamState
5727 pub fn stream_shutdown(
5728 &mut self, stream_id: u64, direction: Shutdown, err: u64,
5729 ) -> Result<()> {
5730 // Don't try to stop a local unidirectional stream.
5731 if direction == Shutdown::Read &&
5732 stream::is_local(stream_id, self.is_server) &&
5733 !stream::is_bidi(stream_id)
5734 {
5735 return Err(Error::InvalidStreamState(stream_id));
5736 }
5737
5738 // Don't try to reset a remote unidirectional stream.
5739 if direction == Shutdown::Write &&
5740 !stream::is_local(stream_id, self.is_server) &&
5741 !stream::is_bidi(stream_id)
5742 {
5743 return Err(Error::InvalidStreamState(stream_id));
5744 }
5745
5746 // Get existing stream.
5747 let stream = self.streams.get_mut(stream_id).ok_or(Error::Done)?;
5748
5749 let priority_key = Arc::clone(&stream.priority_key);
5750
5751 match direction {
5752 Shutdown::Read => {
5753 let consumed = stream.recv.shutdown()?;
5754 self.flow_control.add_consumed(consumed);
5755 if self.flow_control.should_update_max_data() {
5756 self.almost_full = true;
5757 }
5758
5759 if !stream.recv.is_fin() {
5760 self.streams.insert_stopped(stream_id, err);
5761 }
5762
5763 // Once shutdown, the stream is guaranteed to be non-readable.
5764 self.streams.remove_readable(&priority_key);
5765
5766 self.stopped_stream_local_count =
5767 self.stopped_stream_local_count.saturating_add(1);
5768 },
5769
5770 Shutdown::Write => {
5771 let (final_size, unsent) = stream.send.shutdown()?;
5772
5773 // Claw back some flow control allowance from data that was
5774 // buffered but not actually sent before the stream was reset.
5775 self.tx_data = self.tx_data.saturating_sub(unsent);
5776
5777 self.tx_buffered =
5778 self.tx_buffered.saturating_sub(unsent as usize);
5779
5780 // These drops in qlog are a bit weird, but the only way to ensure
5781 // that all bytes that are moved from App to Transport in
5782 // stream_do_send are eventually moved from Transport to Dropped.
5783 // Ideally we would add a Transport to Network transition also as
5784 // a way to indicate when bytes were transmitted vs dropped
5785 // without ever being sent.
5786 qlog_with_type!(QLOG_DATA_MV, self.qlog, q, {
5787 let ev_data =
5788 EventData::DataMoved(qlog::events::quic::DataMoved {
5789 stream_id: Some(stream_id),
5790 offset: Some(final_size),
5791 length: Some(unsent),
5792 from: Some(DataRecipient::Transport),
5793 to: Some(DataRecipient::Dropped),
5794 ..Default::default()
5795 });
5796
5797 q.add_event_data_with_instant(ev_data, Instant::now()).ok();
5798 });
5799
5800 // Update send capacity.
5801 self.update_tx_cap();
5802
5803 self.streams.insert_reset(stream_id, err, final_size);
5804
5805 // Once shutdown, the stream is guaranteed to be non-writable.
5806 self.streams.remove_writable(&priority_key);
5807
5808 self.reset_stream_local_count =
5809 self.reset_stream_local_count.saturating_add(1);
5810 },
5811 }
5812
5813 Ok(())
5814 }
5815
5816 /// Returns the stream's send capacity in bytes.
5817 ///
5818 /// If the specified stream doesn't exist (including when it has already
5819 /// been completed and closed), the [`InvalidStreamState`] error will be
5820 /// returned.
5821 ///
5822 /// In addition, if the peer has signalled that it doesn't want to receive
5823 /// any more data from this stream by sending the `STOP_SENDING` frame, the
5824 /// [`StreamStopped`] error will be returned.
5825 ///
5826 /// [`InvalidStreamState`]: enum.Error.html#variant.InvalidStreamState
5827 /// [`StreamStopped`]: enum.Error.html#variant.StreamStopped
5828 #[inline]
5829 pub fn stream_capacity(&mut self, stream_id: u64) -> Result<usize> {
5830 if let Some(stream) = self.streams.get(stream_id) {
5831 let stream_cap = match stream.send.cap() {
5832 Ok(v) => v,
5833
5834 Err(Error::StreamStopped(e)) => {
5835 // Only collect the stream if it is complete and not
5836 // readable. If it is readable, it will get collected when
5837 // stream_recv() is used.
5838 if stream.is_complete() && !stream.is_readable() {
5839 let local = stream.local;
5840 self.streams.collect(stream_id, local);
5841 }
5842
5843 return Err(Error::StreamStopped(e));
5844 },
5845
5846 Err(e) => return Err(e),
5847 };
5848
5849 let cap = cmp::min(self.tx_cap, stream_cap);
5850 return Ok(cap);
5851 };
5852
5853 Err(Error::InvalidStreamState(stream_id))
5854 }
5855
5856 /// Returns the next stream that has data to read.
5857 ///
5858 /// Note that once returned by this method, a stream ID will not be returned
5859 /// again until it is "re-armed".
5860 ///
5861 /// The application will need to read all of the pending data on the stream,
5862 /// and new data has to be received before the stream is reported again.
5863 ///
5864 /// This is unlike the [`readable()`] method, that returns the same list of
5865 /// readable streams when called multiple times in succession.
5866 ///
5867 /// [`readable()`]: struct.Connection.html#method.readable
5868 pub fn stream_readable_next(&mut self) -> Option<u64> {
5869 let priority_key = self.streams.readable.front().clone_pointer()?;
5870
5871 self.streams.remove_readable(&priority_key);
5872
5873 Some(priority_key.id)
5874 }
5875
5876 /// Returns true if the stream has data that can be read.
5877 pub fn stream_readable(&self, stream_id: u64) -> bool {
5878 let stream = match self.streams.get(stream_id) {
5879 Some(v) => v,
5880
5881 None => return false,
5882 };
5883
5884 stream.is_readable()
5885 }
5886
5887 /// Returns the next stream that can be written to.
5888 ///
5889 /// Note that once returned by this method, a stream ID will not be returned
5890 /// again until it is "re-armed".
5891 ///
5892 /// This is unlike the [`writable()`] method, that returns the same list of
5893 /// writable streams when called multiple times in succession. It is not
5894 /// advised to use both `stream_writable_next()` and [`writable()`] on the
5895 /// same connection, as it may lead to unexpected results.
5896 ///
5897 /// The [`stream_writable()`] method can also be used to fine-tune when a
5898 /// stream is reported as writable again.
5899 ///
5900 /// [`stream_writable()`]: struct.Connection.html#method.stream_writable
5901 /// [`writable()`]: struct.Connection.html#method.writable
5902 pub fn stream_writable_next(&mut self) -> Option<u64> {
5903 // If there is not enough connection-level send capacity, none of the
5904 // streams are writable.
5905 if self.tx_cap == 0 {
5906 return None;
5907 }
5908
5909 let mut cursor = self.streams.writable.front();
5910
5911 while let Some(priority_key) = cursor.clone_pointer() {
5912 if let Some(stream) = self.streams.get(priority_key.id) {
5913 let cap = match stream.send.cap() {
5914 Ok(v) => v,
5915
5916 // Return the stream to the application immediately if it's
5917 // stopped.
5918 Err(_) =>
5919 return {
5920 self.streams.remove_writable(&priority_key);
5921
5922 Some(priority_key.id)
5923 },
5924 };
5925
5926 if cmp::min(self.tx_cap, cap) >= stream.send_lowat {
5927 self.streams.remove_writable(&priority_key);
5928 return Some(priority_key.id);
5929 }
5930 }
5931
5932 cursor.move_next();
5933 }
5934
5935 None
5936 }
5937
5938 /// Returns true if the stream has enough send capacity.
5939 ///
5940 /// When `len` more bytes can be buffered into the given stream's send
5941 /// buffer, `true` will be returned, `false` otherwise.
5942 ///
5943 /// In the latter case, if the additional data can't be buffered due to
5944 /// flow control limits, the peer will also be notified, and a "low send
5945 /// watermark" will be set for the stream, such that it is not going to be
5946 /// reported as writable again by [`stream_writable_next()`] until its send
5947 /// capacity reaches `len`.
5948 ///
5949 /// If the specified stream doesn't exist (including when it has already
5950 /// been completed and closed), the [`InvalidStreamState`] error will be
5951 /// returned.
5952 ///
5953 /// In addition, if the peer has signalled that it doesn't want to receive
5954 /// any more data from this stream by sending the `STOP_SENDING` frame, the
5955 /// [`StreamStopped`] error will be returned.
5956 ///
5957 /// [`stream_writable_next()`]: struct.Connection.html#method.stream_writable_next
5958 /// [`InvalidStreamState`]: enum.Error.html#variant.InvalidStreamState
5959 /// [`StreamStopped`]: enum.Error.html#variant.StreamStopped
5960 #[inline]
5961 pub fn stream_writable(
5962 &mut self, stream_id: u64, len: usize,
5963 ) -> Result<bool> {
5964 if self.stream_capacity(stream_id)? >= len {
5965 return Ok(true);
5966 }
5967
5968 let stream = match self.streams.get_mut(stream_id) {
5969 Some(v) => v,
5970
5971 None => return Err(Error::InvalidStreamState(stream_id)),
5972 };
5973
5974 stream.send_lowat = cmp::max(1, len);
5975
5976 let is_writable = stream.is_writable();
5977
5978 let priority_key = Arc::clone(&stream.priority_key);
5979
5980 if self.max_tx_data - self.tx_data < len as u64 {
5981 self.blocked_limit = Some(self.max_tx_data);
5982 }
5983
5984 if stream.send.cap()? < len {
5985 let max_off = stream.send.max_off();
5986 if stream.send.blocked_at() != Some(max_off) {
5987 stream.send.update_blocked_at(Some(max_off));
5988 self.streams.insert_blocked(stream_id, max_off);
5989 }
5990 } else if is_writable {
5991 // When `stream_writable_next()` returns a stream, the writable
5992 // mark is removed, but because the stream is blocked by the
5993 // connection-level send capacity it won't be marked as writable
5994 // again once the capacity increases.
5995 //
5996 // Since the stream is writable already, mark it here instead.
5997 self.streams.insert_writable(&priority_key);
5998 }
5999
6000 Ok(false)
6001 }
6002
6003 /// Returns true if all the data has been read from the specified stream.
6004 ///
6005 /// This instructs the application that all the data received from the
6006 /// peer on the stream has been read, and there won't be anymore in the
6007 /// future.
6008 ///
6009 /// Basically this returns true when the peer either set the `fin` flag
6010 /// for the stream, or sent `RESET_STREAM`.
6011 #[inline]
6012 pub fn stream_finished(&self, stream_id: u64) -> bool {
6013 let stream = match self.streams.get(stream_id) {
6014 Some(v) => v,
6015
6016 None => return true,
6017 };
6018
6019 stream.recv.is_fin()
6020 }
6021
6022 /// Returns the number of bidirectional streams that can be created
6023 /// before the peer's stream count limit is reached.
6024 ///
6025 /// This can be useful to know if it's possible to create a bidirectional
6026 /// stream without trying it first.
6027 #[inline]
6028 pub fn peer_streams_left_bidi(&self) -> u64 {
6029 self.streams.peer_streams_left_bidi()
6030 }
6031
6032 /// Returns the number of unidirectional streams that can be created
6033 /// before the peer's stream count limit is reached.
6034 ///
6035 /// This can be useful to know if it's possible to create a unidirectional
6036 /// stream without trying it first.
6037 #[inline]
6038 pub fn peer_streams_left_uni(&self) -> u64 {
6039 self.streams.peer_streams_left_uni()
6040 }
6041
6042 /// Returns an iterator over streams that have outstanding data to read.
6043 ///
6044 /// Note that the iterator will only include streams that were readable at
6045 /// the time the iterator itself was created (i.e. when `readable()` was
6046 /// called). To account for newly readable streams, the iterator needs to
6047 /// be created again.
6048 ///
6049 /// ## Examples:
6050 ///
6051 /// ```no_run
6052 /// # let mut buf = [0; 512];
6053 /// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
6054 /// # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
6055 /// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
6056 /// # let peer = "127.0.0.1:1234".parse().unwrap();
6057 /// # let local = socket.local_addr().unwrap();
6058 /// # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
6059 /// // Iterate over readable streams.
6060 /// for stream_id in conn.readable() {
6061 /// // Stream is readable, read until there's no more data.
6062 /// while let Ok((read, fin)) = conn.stream_recv(stream_id, &mut buf) {
6063 /// println!("Got {} bytes on stream {}", read, stream_id);
6064 /// }
6065 /// }
6066 /// # Ok::<(), quiche::Error>(())
6067 /// ```
6068 #[inline]
6069 pub fn readable(&self) -> StreamIter {
6070 self.streams.readable()
6071 }
6072
6073 /// Returns an iterator over streams that can be written in priority order.
6074 ///
6075 /// The priority order is based on RFC 9218 scheduling recommendations.
6076 /// Stream priority can be controlled using [`stream_priority()`]. In order
6077 /// to support fairness requirements, each time this method is called,
6078 /// internal state is updated. Therefore the iterator ordering can change
6079 /// between calls, even if no streams were added or removed.
6080 ///
6081 /// A "writable" stream is a stream that has enough flow control capacity to
6082 /// send data to the peer. To avoid buffering an infinite amount of data,
6083 /// streams are only allowed to buffer outgoing data up to the amount that
6084 /// the peer allows to send.
6085 ///
6086 /// Note that the iterator will only include streams that were writable at
6087 /// the time the iterator itself was created (i.e. when `writable()` was
6088 /// called). To account for newly writable streams, the iterator needs to be
6089 /// created again.
6090 ///
6091 /// ## Examples:
6092 ///
6093 /// ```no_run
6094 /// # let mut buf = [0; 512];
6095 /// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
6096 /// # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
6097 /// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
6098 /// # let local = socket.local_addr().unwrap();
6099 /// # let peer = "127.0.0.1:1234".parse().unwrap();
6100 /// # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
6101 /// // Iterate over writable streams.
6102 /// for stream_id in conn.writable() {
6103 /// // Stream is writable, write some data.
6104 /// if let Ok(written) = conn.stream_send(stream_id, &buf, false) {
6105 /// println!("Written {} bytes on stream {}", written, stream_id);
6106 /// }
6107 /// }
6108 /// # Ok::<(), quiche::Error>(())
6109 /// ```
6110 /// [`stream_priority()`]: struct.Connection.html#method.stream_priority
6111 #[inline]
6112 pub fn writable(&self) -> StreamIter {
6113 // If there is not enough connection-level send capacity, none of the
6114 // streams are writable, so return an empty iterator.
6115 if self.tx_cap == 0 {
6116 return StreamIter::default();
6117 }
6118
6119 self.streams.writable()
6120 }
6121
6122 /// Returns the maximum possible size of egress UDP payloads.
6123 ///
6124 /// This is the maximum size of UDP payloads that can be sent, and depends
6125 /// on both the configured maximum send payload size of the local endpoint
6126 /// (as configured with [`set_max_send_udp_payload_size()`]), as well as
6127 /// the transport parameter advertised by the remote peer.
6128 ///
6129 /// Note that this value can change during the lifetime of the connection,
6130 /// but should remain stable across consecutive calls to [`send()`].
6131 ///
6132 /// [`set_max_send_udp_payload_size()`]:
6133 /// struct.Config.html#method.set_max_send_udp_payload_size
6134 /// [`send()`]: struct.Connection.html#method.send
6135 pub fn max_send_udp_payload_size(&self) -> usize {
6136 let max_datagram_size = self
6137 .paths
6138 .get_active()
6139 .ok()
6140 .map(|p| p.recovery.max_datagram_size());
6141
6142 if let Some(max_datagram_size) = max_datagram_size {
6143 if self.is_established() {
6144 // We cap the maximum packet size to 16KB or so, so that it can be
6145 // always encoded with a 2-byte varint.
6146 return cmp::min(16383, max_datagram_size);
6147 }
6148 }
6149
6150 // Allow for 1200 bytes (minimum QUIC packet size) during the
6151 // handshake.
6152 MIN_CLIENT_INITIAL_LEN
6153 }
6154
6155 /// Schedule an ack-eliciting packet on the active path.
6156 ///
6157 /// QUIC packets might not contain ack-eliciting frames during normal
6158 /// operating conditions. If the packet would already contain
6159 /// ack-eliciting frames, this method does not change any behavior.
6160 /// However, if the packet would not ordinarily contain ack-eliciting
6161 /// frames, this method ensures that a PING frame sent.
6162 ///
6163 /// Calling this method multiple times before [`send()`] has no effect.
6164 ///
6165 /// [`send()`]: struct.Connection.html#method.send
6166 pub fn send_ack_eliciting(&mut self) -> Result<()> {
6167 if self.is_closed() || self.is_draining() {
6168 return Ok(());
6169 }
6170 self.paths.get_active_mut()?.needs_ack_eliciting = true;
6171 Ok(())
6172 }
6173
6174 /// Schedule an ack-eliciting packet on the specified path.
6175 ///
6176 /// See [`send_ack_eliciting()`] for more detail. [`InvalidState`] is
6177 /// returned if there is no record of the path.
6178 ///
6179 /// [`send_ack_eliciting()`]: struct.Connection.html#method.send_ack_eliciting
6180 /// [`InvalidState`]: enum.Error.html#variant.InvalidState
6181 pub fn send_ack_eliciting_on_path(
6182 &mut self, local: SocketAddr, peer: SocketAddr,
6183 ) -> Result<()> {
6184 if self.is_closed() || self.is_draining() {
6185 return Ok(());
6186 }
6187 let path_id = self
6188 .paths
6189 .path_id_from_addrs(&(local, peer))
6190 .ok_or(Error::InvalidState)?;
6191 self.paths.get_mut(path_id)?.needs_ack_eliciting = true;
6192 Ok(())
6193 }
6194
6195 /// Reads the first received DATAGRAM.
6196 ///
6197 /// On success the DATAGRAM's data is returned along with its size.
6198 ///
6199 /// [`Done`] is returned if there is no data to read.
6200 ///
6201 /// [`BufferTooShort`] is returned if the provided buffer is too small for
6202 /// the DATAGRAM.
6203 ///
6204 /// [`Done`]: enum.Error.html#variant.Done
6205 /// [`BufferTooShort`]: enum.Error.html#variant.BufferTooShort
6206 ///
6207 /// ## Examples:
6208 ///
6209 /// ```no_run
6210 /// # let mut buf = [0; 512];
6211 /// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
6212 /// # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
6213 /// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
6214 /// # let peer = "127.0.0.1:1234".parse().unwrap();
6215 /// # let local = socket.local_addr().unwrap();
6216 /// # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
6217 /// let mut dgram_buf = [0; 512];
6218 /// while let Ok((len)) = conn.dgram_recv(&mut dgram_buf) {
6219 /// println!("Got {} bytes of DATAGRAM", len);
6220 /// }
6221 /// # Ok::<(), quiche::Error>(())
6222 /// ```
6223 #[inline]
6224 pub fn dgram_recv(&mut self, buf: &mut [u8]) -> Result<usize> {
6225 match self.dgram_recv_queue.pop() {
6226 Some(d) => {
6227 if d.len() > buf.len() {
6228 return Err(Error::BufferTooShort);
6229 }
6230
6231 buf[..d.len()].copy_from_slice(&d);
6232 Ok(d.len())
6233 },
6234
6235 None => Err(Error::Done),
6236 }
6237 }
6238
6239 /// Reads the first received DATAGRAM.
6240 ///
6241 /// This is the same as [`dgram_recv()`] but returns the DATAGRAM as a
6242 /// `Vec<u8>` instead of copying into the provided buffer.
6243 ///
6244 /// [`dgram_recv()`]: struct.Connection.html#method.dgram_recv
6245 #[inline]
6246 pub fn dgram_recv_vec(&mut self) -> Result<Vec<u8>> {
6247 match self.dgram_recv_queue.pop() {
6248 Some(d) => Ok(d),
6249
6250 None => Err(Error::Done),
6251 }
6252 }
6253
6254 /// Reads the first received DATAGRAM without removing it from the queue.
6255 ///
6256 /// On success the DATAGRAM's data is returned along with the actual number
6257 /// of bytes peeked. The requested length cannot exceed the DATAGRAM's
6258 /// actual length.
6259 ///
6260 /// [`Done`] is returned if there is no data to read.
6261 ///
6262 /// [`BufferTooShort`] is returned if the provided buffer is smaller the
6263 /// number of bytes to peek.
6264 ///
6265 /// [`Done`]: enum.Error.html#variant.Done
6266 /// [`BufferTooShort`]: enum.Error.html#variant.BufferTooShort
6267 #[inline]
6268 pub fn dgram_recv_peek(&self, buf: &mut [u8], len: usize) -> Result<usize> {
6269 self.dgram_recv_queue.peek_front_bytes(buf, len)
6270 }
6271
6272 /// Returns the length of the first stored DATAGRAM.
6273 #[inline]
6274 pub fn dgram_recv_front_len(&self) -> Option<usize> {
6275 self.dgram_recv_queue.peek_front_len()
6276 }
6277
6278 /// Returns the number of items in the DATAGRAM receive queue.
6279 #[inline]
6280 pub fn dgram_recv_queue_len(&self) -> usize {
6281 self.dgram_recv_queue.len()
6282 }
6283
6284 /// Returns the total size of all items in the DATAGRAM receive queue.
6285 #[inline]
6286 pub fn dgram_recv_queue_byte_size(&self) -> usize {
6287 self.dgram_recv_queue.byte_size()
6288 }
6289
6290 /// Returns the number of items in the DATAGRAM send queue.
6291 #[inline]
6292 pub fn dgram_send_queue_len(&self) -> usize {
6293 self.dgram_send_queue.len()
6294 }
6295
6296 /// Returns the total size of all items in the DATAGRAM send queue.
6297 #[inline]
6298 pub fn dgram_send_queue_byte_size(&self) -> usize {
6299 self.dgram_send_queue.byte_size()
6300 }
6301
6302 /// Returns whether or not the DATAGRAM send queue is full.
6303 #[inline]
6304 pub fn is_dgram_send_queue_full(&self) -> bool {
6305 self.dgram_send_queue.is_full()
6306 }
6307
6308 /// Returns whether or not the DATAGRAM recv queue is full.
6309 #[inline]
6310 pub fn is_dgram_recv_queue_full(&self) -> bool {
6311 self.dgram_recv_queue.is_full()
6312 }
6313
6314 /// Sends data in a DATAGRAM frame.
6315 ///
6316 /// [`Done`] is returned if no data was written.
6317 /// [`InvalidState`] is returned if the peer does not support DATAGRAM.
6318 /// [`BufferTooShort`] is returned if the DATAGRAM frame length is larger
6319 /// than peer's supported DATAGRAM frame length. Use
6320 /// [`dgram_max_writable_len()`] to get the largest supported DATAGRAM
6321 /// frame length.
6322 ///
6323 /// Note that there is no flow control of DATAGRAM frames, so in order to
6324 /// avoid buffering an infinite amount of frames we apply an internal
6325 /// limit.
6326 ///
6327 /// [`Done`]: enum.Error.html#variant.Done
6328 /// [`InvalidState`]: enum.Error.html#variant.InvalidState
6329 /// [`BufferTooShort`]: enum.Error.html#variant.BufferTooShort
6330 /// [`dgram_max_writable_len()`]:
6331 /// struct.Connection.html#method.dgram_max_writable_len
6332 ///
6333 /// ## Examples:
6334 ///
6335 /// ```no_run
6336 /// # let mut buf = [0; 512];
6337 /// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
6338 /// # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
6339 /// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
6340 /// # let peer = "127.0.0.1:1234".parse().unwrap();
6341 /// # let local = socket.local_addr().unwrap();
6342 /// # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
6343 /// conn.dgram_send(b"hello")?;
6344 /// # Ok::<(), quiche::Error>(())
6345 /// ```
6346 pub fn dgram_send(&mut self, buf: &[u8]) -> Result<()> {
6347 let max_payload_len = match self.dgram_max_writable_len() {
6348 Some(v) => v,
6349
6350 None => return Err(Error::InvalidState),
6351 };
6352
6353 if buf.len() > max_payload_len {
6354 return Err(Error::BufferTooShort);
6355 }
6356
6357 self.dgram_send_queue.push(buf.to_vec())?;
6358
6359 let active_path = self.paths.get_active_mut()?;
6360
6361 if self.dgram_send_queue.byte_size() >
6362 active_path.recovery.cwnd_available()
6363 {
6364 active_path.recovery.update_app_limited(false);
6365 }
6366
6367 Ok(())
6368 }
6369
6370 /// Sends data in a DATAGRAM frame.
6371 ///
6372 /// This is the same as [`dgram_send()`] but takes a `Vec<u8>` instead of
6373 /// a slice.
6374 ///
6375 /// [`dgram_send()`]: struct.Connection.html#method.dgram_send
6376 pub fn dgram_send_vec(&mut self, buf: Vec<u8>) -> Result<()> {
6377 let max_payload_len = match self.dgram_max_writable_len() {
6378 Some(v) => v,
6379
6380 None => return Err(Error::InvalidState),
6381 };
6382
6383 if buf.len() > max_payload_len {
6384 return Err(Error::BufferTooShort);
6385 }
6386
6387 self.dgram_send_queue.push(buf)?;
6388
6389 let active_path = self.paths.get_active_mut()?;
6390
6391 if self.dgram_send_queue.byte_size() >
6392 active_path.recovery.cwnd_available()
6393 {
6394 active_path.recovery.update_app_limited(false);
6395 }
6396
6397 Ok(())
6398 }
6399
6400 /// Purges queued outgoing DATAGRAMs matching the predicate.
6401 ///
6402 /// In other words, remove all elements `e` such that `f(&e)` returns true.
6403 ///
6404 /// ## Examples:
6405 /// ```no_run
6406 /// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
6407 /// # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
6408 /// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
6409 /// # let peer = "127.0.0.1:1234".parse().unwrap();
6410 /// # let local = socket.local_addr().unwrap();
6411 /// # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
6412 /// conn.dgram_send(b"hello")?;
6413 /// conn.dgram_purge_outgoing(&|d: &[u8]| -> bool { d[0] == 0 });
6414 /// # Ok::<(), quiche::Error>(())
6415 /// ```
6416 #[inline]
6417 pub fn dgram_purge_outgoing<FN: Fn(&[u8]) -> bool>(&mut self, f: FN) {
6418 self.dgram_send_queue.purge(f);
6419 }
6420
6421 /// Returns the maximum DATAGRAM payload that can be sent.
6422 ///
6423 /// [`None`] is returned if the peer hasn't advertised a maximum DATAGRAM
6424 /// frame size.
6425 ///
6426 /// ## Examples:
6427 ///
6428 /// ```no_run
6429 /// # let mut buf = [0; 512];
6430 /// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
6431 /// # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
6432 /// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
6433 /// # let peer = "127.0.0.1:1234".parse().unwrap();
6434 /// # let local = socket.local_addr().unwrap();
6435 /// # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
6436 /// if let Some(payload_size) = conn.dgram_max_writable_len() {
6437 /// if payload_size > 5 {
6438 /// conn.dgram_send(b"hello")?;
6439 /// }
6440 /// }
6441 /// # Ok::<(), quiche::Error>(())
6442 /// ```
6443 #[inline]
6444 pub fn dgram_max_writable_len(&self) -> Option<usize> {
6445 match self.peer_transport_params.max_datagram_frame_size {
6446 None => None,
6447 Some(peer_frame_len) => {
6448 let dcid = self.destination_id();
6449 // Start from the maximum packet size...
6450 let mut max_len = self.max_send_udp_payload_size();
6451 // ...subtract the Short packet header overhead...
6452 // (1 byte of pkt_len + len of dcid)
6453 max_len = max_len.saturating_sub(1 + dcid.len());
6454 // ...subtract the packet number (max len)...
6455 max_len = max_len.saturating_sub(packet::MAX_PKT_NUM_LEN);
6456 // ...subtract the crypto overhead...
6457 max_len = max_len.saturating_sub(
6458 self.crypto_ctx[packet::Epoch::Application]
6459 .crypto_overhead()?,
6460 );
6461 // ...clamp to what peer can support...
6462 max_len = cmp::min(peer_frame_len as usize, max_len);
6463 // ...subtract frame overhead, checked for underflow.
6464 // (1 byte of frame type + len of length )
6465 max_len.checked_sub(1 + frame::MAX_DGRAM_OVERHEAD)
6466 },
6467 }
6468 }
6469
6470 fn dgram_enabled(&self) -> bool {
6471 self.local_transport_params
6472 .max_datagram_frame_size
6473 .is_some()
6474 }
6475
6476 /// Returns when the next timeout event will occur.
6477 ///
6478 /// Once the timeout Instant has been reached, the [`on_timeout()`] method
6479 /// should be called. A timeout of `None` means that the timer should be
6480 /// disarmed.
6481 ///
6482 /// [`on_timeout()`]: struct.Connection.html#method.on_timeout
6483 pub fn timeout_instant(&self) -> Option<Instant> {
6484 if self.is_closed() {
6485 return None;
6486 }
6487
6488 if self.is_draining() {
6489 // Draining timer takes precedence over all other timers. If it is
6490 // set it means the connection is closing so there's no point in
6491 // processing the other timers.
6492 self.draining_timer
6493 } else {
6494 // Use the lowest timer value (i.e. "sooner") among idle and loss
6495 // detection timers. If they are both unset (i.e. `None`) then the
6496 // result is `None`, but if at least one of them is set then a
6497 // `Some(...)` value is returned.
6498 let path_timer = self
6499 .paths
6500 .iter()
6501 .filter_map(|(_, p)| p.recovery.loss_detection_timer())
6502 .min();
6503
6504 let key_update_timer = self.crypto_ctx[packet::Epoch::Application]
6505 .key_update
6506 .as_ref()
6507 .map(|key_update| key_update.timer);
6508
6509 let timers = [self.idle_timer, path_timer, key_update_timer];
6510
6511 timers.iter().filter_map(|&x| x).min()
6512 }
6513 }
6514
6515 /// Returns the amount of time until the next timeout event.
6516 ///
6517 /// Once the given duration has elapsed, the [`on_timeout()`] method should
6518 /// be called. A timeout of `None` means that the timer should be disarmed.
6519 ///
6520 /// [`on_timeout()`]: struct.Connection.html#method.on_timeout
6521 pub fn timeout(&self) -> Option<Duration> {
6522 self.timeout_instant().map(|timeout| {
6523 let now = Instant::now();
6524
6525 if timeout <= now {
6526 Duration::ZERO
6527 } else {
6528 timeout.duration_since(now)
6529 }
6530 })
6531 }
6532
6533 /// Processes a timeout event.
6534 ///
6535 /// If no timeout has occurred it does nothing.
6536 pub fn on_timeout(&mut self) {
6537 let now = Instant::now();
6538
6539 if let Some(draining_timer) = self.draining_timer {
6540 if draining_timer <= now {
6541 trace!("{} draining timeout expired", self.trace_id);
6542
6543 self.mark_closed();
6544 }
6545
6546 // Draining timer takes precedence over all other timers. If it is
6547 // set it means the connection is closing so there's no point in
6548 // processing the other timers.
6549 return;
6550 }
6551
6552 if let Some(timer) = self.idle_timer {
6553 if timer <= now {
6554 trace!("{} idle timeout expired", self.trace_id);
6555
6556 self.mark_closed();
6557 self.timed_out = true;
6558 return;
6559 }
6560 }
6561
6562 if let Some(timer) = self.crypto_ctx[packet::Epoch::Application]
6563 .key_update
6564 .as_ref()
6565 .map(|key_update| key_update.timer)
6566 {
6567 if timer <= now {
6568 // Discard previous key once key update timer expired.
6569 let _ = self.crypto_ctx[packet::Epoch::Application]
6570 .key_update
6571 .take();
6572 }
6573 }
6574
6575 let handshake_status = self.handshake_status();
6576
6577 for (_, p) in self.paths.iter_mut() {
6578 if let Some(timer) = p.recovery.loss_detection_timer() {
6579 if timer <= now {
6580 trace!("{} loss detection timeout expired", self.trace_id);
6581
6582 let OnLossDetectionTimeoutOutcome {
6583 lost_packets,
6584 lost_bytes,
6585 } = p.on_loss_detection_timeout(
6586 handshake_status,
6587 now,
6588 self.is_server,
6589 &self.trace_id,
6590 );
6591
6592 self.lost_count += lost_packets;
6593 self.lost_bytes += lost_bytes as u64;
6594
6595 qlog_with_type!(QLOG_METRICS, self.qlog, q, {
6596 p.recovery.maybe_qlog(q, now);
6597 });
6598 }
6599 }
6600 }
6601
6602 // Notify timeout events to the application.
6603 self.paths.notify_failed_validations();
6604
6605 // If the active path failed, try to find a new candidate.
6606 if self.paths.get_active_path_id().is_err() {
6607 match self.paths.find_candidate_path() {
6608 Some(pid) => {
6609 if self.set_active_path(pid, now).is_err() {
6610 // The connection cannot continue.
6611 self.mark_closed();
6612 }
6613 },
6614
6615 // The connection cannot continue.
6616 None => {
6617 self.mark_closed();
6618 },
6619 }
6620 }
6621 }
6622
6623 /// Requests the stack to perform path validation of the proposed 4-tuple.
6624 ///
6625 /// Probing new paths requires spare Connection IDs at both the host and the
6626 /// peer sides. If it is not the case, it raises an [`OutOfIdentifiers`].
6627 ///
6628 /// The probing of new addresses can only be done by the client. The server
6629 /// can only probe network paths that were previously advertised by
6630 /// [`PathEvent::New`]. If the server tries to probe such an unseen network
6631 /// path, this call raises an [`InvalidState`].
6632 ///
6633 /// The caller might also want to probe an existing path. In such case, it
6634 /// triggers a PATH_CHALLENGE frame, but it does not require spare CIDs.
6635 ///
6636 /// A server always probes a new path it observes. Calling this method is
6637 /// hence not required to validate a new path. However, a server can still
6638 /// request an additional path validation of the proposed 4-tuple.
6639 ///
6640 /// Calling this method several times before calling [`send()`] or
6641 /// [`send_on_path()`] results in a single probe being generated. An
6642 /// application wanting to send multiple in-flight probes must call this
6643 /// method again after having sent packets.
6644 ///
6645 /// Returns the Destination Connection ID sequence number associated to that
6646 /// path.
6647 ///
6648 /// [`PathEvent::New`]: enum.PathEvent.html#variant.New
6649 /// [`OutOfIdentifiers`]: enum.Error.html#OutOfIdentifiers
6650 /// [`InvalidState`]: enum.Error.html#InvalidState
6651 /// [`send()`]: struct.Connection.html#method.send
6652 /// [`send_on_path()`]: struct.Connection.html#method.send_on_path
6653 pub fn probe_path(
6654 &mut self, local_addr: SocketAddr, peer_addr: SocketAddr,
6655 ) -> Result<u64> {
6656 // We may want to probe an existing path.
6657 let pid = match self.paths.path_id_from_addrs(&(local_addr, peer_addr)) {
6658 Some(pid) => pid,
6659 None => self.create_path_on_client(local_addr, peer_addr)?,
6660 };
6661
6662 let path = self.paths.get_mut(pid)?;
6663 path.request_validation();
6664
6665 path.active_dcid_seq.ok_or(Error::InvalidState)
6666 }
6667
6668 /// Migrates the connection to a new local address `local_addr`.
6669 ///
6670 /// The behavior is similar to [`migrate()`], with the nuance that the
6671 /// connection only changes the local address, but not the peer one.
6672 ///
6673 /// See [`migrate()`] for the full specification of this method.
6674 ///
6675 /// [`migrate()`]: struct.Connection.html#method.migrate
6676 pub fn migrate_source(&mut self, local_addr: SocketAddr) -> Result<u64> {
6677 let peer_addr = self.paths.get_active()?.peer_addr();
6678 self.migrate(local_addr, peer_addr)
6679 }
6680
6681 /// Migrates the connection over the given network path between `local_addr`
6682 /// and `peer_addr`.
6683 ///
6684 /// Connection migration can only be initiated by the client. Calling this
6685 /// method as a server returns [`InvalidState`].
6686 ///
6687 /// To initiate voluntary migration, there should be enough Connection IDs
6688 /// at both sides. If this requirement is not satisfied, this call returns
6689 /// [`OutOfIdentifiers`].
6690 ///
6691 /// Returns the Destination Connection ID associated to that migrated path.
6692 ///
6693 /// [`OutOfIdentifiers`]: enum.Error.html#OutOfIdentifiers
6694 /// [`InvalidState`]: enum.Error.html#InvalidState
6695 pub fn migrate(
6696 &mut self, local_addr: SocketAddr, peer_addr: SocketAddr,
6697 ) -> Result<u64> {
6698 if self.is_server {
6699 return Err(Error::InvalidState);
6700 }
6701
6702 // If the path already exists, mark it as the active one.
6703 let (pid, dcid_seq) = if let Some(pid) =
6704 self.paths.path_id_from_addrs(&(local_addr, peer_addr))
6705 {
6706 let path = self.paths.get_mut(pid)?;
6707
6708 // If it is already active, do nothing.
6709 if path.active() {
6710 return path.active_dcid_seq.ok_or(Error::OutOfIdentifiers);
6711 }
6712
6713 // Ensures that a Source Connection ID has been dedicated to this
6714 // path, or a free one is available. This is only required if the
6715 // host uses non-zero length Source Connection IDs.
6716 if !self.ids.zero_length_scid() &&
6717 path.active_scid_seq.is_none() &&
6718 self.ids.available_scids() == 0
6719 {
6720 return Err(Error::OutOfIdentifiers);
6721 }
6722
6723 // Ensures that the migrated path has a Destination Connection ID.
6724 let dcid_seq = if let Some(dcid_seq) = path.active_dcid_seq {
6725 dcid_seq
6726 } else {
6727 let dcid_seq = self
6728 .ids
6729 .lowest_available_dcid_seq()
6730 .ok_or(Error::OutOfIdentifiers)?;
6731
6732 self.ids.link_dcid_to_path_id(dcid_seq, pid)?;
6733 path.active_dcid_seq = Some(dcid_seq);
6734
6735 dcid_seq
6736 };
6737
6738 (pid, dcid_seq)
6739 } else {
6740 let pid = self.create_path_on_client(local_addr, peer_addr)?;
6741
6742 let dcid_seq = self
6743 .paths
6744 .get(pid)?
6745 .active_dcid_seq
6746 .ok_or(Error::InvalidState)?;
6747
6748 (pid, dcid_seq)
6749 };
6750
6751 // Change the active path.
6752 self.set_active_path(pid, Instant::now())?;
6753
6754 Ok(dcid_seq)
6755 }
6756
6757 /// Provides additional source Connection IDs that the peer can use to reach
6758 /// this host.
6759 ///
6760 /// This triggers sending NEW_CONNECTION_ID frames if the provided Source
6761 /// Connection ID is not already present. In the case the caller tries to
6762 /// reuse a Connection ID with a different reset token, this raises an
6763 /// `InvalidState`.
6764 ///
6765 /// At any time, the peer cannot have more Destination Connection IDs than
6766 /// the maximum number of active Connection IDs it negotiated. In such case
6767 /// (i.e., when [`scids_left()`] returns 0), if the host agrees to
6768 /// request the removal of previous connection IDs, it sets the
6769 /// `retire_if_needed` parameter. Otherwise, an [`IdLimit`] is returned.
6770 ///
6771 /// Note that setting `retire_if_needed` does not prevent this function from
6772 /// returning an [`IdLimit`] in the case the caller wants to retire still
6773 /// unannounced Connection IDs.
6774 ///
6775 /// The caller is responsible for ensuring that the provided `scid` is not
6776 /// repeated several times over the connection. quiche ensures that as long
6777 /// as the provided Connection ID is still in use (i.e., not retired), it
6778 /// does not assign a different sequence number.
6779 ///
6780 /// Note that if the host uses zero-length Source Connection IDs, it cannot
6781 /// advertise Source Connection IDs and calling this method returns an
6782 /// [`InvalidState`].
6783 ///
6784 /// Returns the sequence number associated to the provided Connection ID.
6785 ///
6786 /// [`scids_left()`]: struct.Connection.html#method.scids_left
6787 /// [`IdLimit`]: enum.Error.html#IdLimit
6788 /// [`InvalidState`]: enum.Error.html#InvalidState
6789 pub fn new_scid(
6790 &mut self, scid: &ConnectionId, reset_token: u128, retire_if_needed: bool,
6791 ) -> Result<u64> {
6792 self.ids.new_scid(
6793 scid.to_vec().into(),
6794 Some(reset_token),
6795 true,
6796 None,
6797 retire_if_needed,
6798 )
6799 }
6800
6801 /// Returns the number of source Connection IDs that are active. This is
6802 /// only meaningful if the host uses non-zero length Source Connection IDs.
6803 pub fn active_scids(&self) -> usize {
6804 self.ids.active_source_cids()
6805 }
6806
6807 /// Returns the number of source Connection IDs that should be provided
6808 /// to the peer without exceeding the limit it advertised.
6809 ///
6810 /// This will automatically limit the number of Connection IDs to the
6811 /// minimum between the locally configured active connection ID limit,
6812 /// and the one sent by the peer.
6813 ///
6814 /// To obtain the maximum possible value allowed by the peer an application
6815 /// can instead inspect the [`peer_active_conn_id_limit`] value.
6816 ///
6817 /// [`peer_active_conn_id_limit`]: struct.Stats.html#structfield.peer_active_conn_id_limit
6818 #[inline]
6819 pub fn scids_left(&self) -> usize {
6820 let max_active_source_cids = cmp::min(
6821 self.peer_transport_params.active_conn_id_limit,
6822 self.local_transport_params.active_conn_id_limit,
6823 ) as usize;
6824
6825 max_active_source_cids - self.active_scids()
6826 }
6827
6828 /// Requests the retirement of the destination Connection ID used by the
6829 /// host to reach its peer.
6830 ///
6831 /// This triggers sending RETIRE_CONNECTION_ID frames.
6832 ///
6833 /// If the application tries to retire a non-existing Destination Connection
6834 /// ID sequence number, or if it uses zero-length Destination Connection ID,
6835 /// this method returns an [`InvalidState`].
6836 ///
6837 /// At any time, the host must have at least one Destination ID. If the
6838 /// application tries to retire the last one, or if the caller tries to
6839 /// retire the destination Connection ID used by the current active path
6840 /// while having neither spare Destination Connection IDs nor validated
6841 /// network paths, this method returns an [`OutOfIdentifiers`]. This
6842 /// behavior prevents the caller from stalling the connection due to the
6843 /// lack of validated path to send non-probing packets.
6844 ///
6845 /// [`InvalidState`]: enum.Error.html#InvalidState
6846 /// [`OutOfIdentifiers`]: enum.Error.html#OutOfIdentifiers
6847 pub fn retire_dcid(&mut self, dcid_seq: u64) -> Result<()> {
6848 if self.ids.zero_length_dcid() {
6849 return Err(Error::InvalidState);
6850 }
6851
6852 let active_path_dcid_seq = self
6853 .paths
6854 .get_active()?
6855 .active_dcid_seq
6856 .ok_or(Error::InvalidState)?;
6857
6858 let active_path_id = self.paths.get_active_path_id()?;
6859
6860 if active_path_dcid_seq == dcid_seq &&
6861 self.ids.lowest_available_dcid_seq().is_none() &&
6862 !self
6863 .paths
6864 .iter()
6865 .any(|(pid, p)| pid != active_path_id && p.usable())
6866 {
6867 return Err(Error::OutOfIdentifiers);
6868 }
6869
6870 if let Some(pid) = self.ids.retire_dcid(dcid_seq)? {
6871 // The retired Destination CID was associated to a given path. Let's
6872 // find an available DCID to associate to that path.
6873 let path = self.paths.get_mut(pid)?;
6874 let dcid_seq = self.ids.lowest_available_dcid_seq();
6875
6876 if let Some(dcid_seq) = dcid_seq {
6877 self.ids.link_dcid_to_path_id(dcid_seq, pid)?;
6878 }
6879
6880 path.active_dcid_seq = dcid_seq;
6881 }
6882
6883 Ok(())
6884 }
6885
6886 /// Processes path-specific events.
6887 ///
6888 /// On success it returns a [`PathEvent`], or `None` when there are no
6889 /// events to report. Please refer to [`PathEvent`] for the exhaustive event
6890 /// list.
6891 ///
6892 /// Note that all events are edge-triggered, meaning that once reported they
6893 /// will not be reported again by calling this method again, until the event
6894 /// is re-armed.
6895 ///
6896 /// [`PathEvent`]: enum.PathEvent.html
6897 pub fn path_event_next(&mut self) -> Option<PathEvent> {
6898 self.paths.pop_event()
6899 }
6900
6901 /// Returns the number of source Connection IDs that are retired.
6902 pub fn retired_scids(&self) -> usize {
6903 self.ids.retired_source_cids()
6904 }
6905
6906 /// Returns a source `ConnectionId` that has been retired.
6907 ///
6908 /// On success it returns a [`ConnectionId`], or `None` when there are no
6909 /// more retired connection IDs.
6910 ///
6911 /// [`ConnectionId`]: struct.ConnectionId.html
6912 pub fn retired_scid_next(&mut self) -> Option<ConnectionId<'static>> {
6913 self.ids.pop_retired_scid()
6914 }
6915
6916 /// Returns the number of spare Destination Connection IDs, i.e.,
6917 /// Destination Connection IDs that are still unused.
6918 ///
6919 /// Note that this function returns 0 if the host uses zero length
6920 /// Destination Connection IDs.
6921 pub fn available_dcids(&self) -> usize {
6922 self.ids.available_dcids()
6923 }
6924
6925 /// Returns an iterator over destination `SockAddr`s whose association
6926 /// with `from` forms a known QUIC path on which packets can be sent to.
6927 ///
6928 /// This function is typically used in combination with [`send_on_path()`].
6929 ///
6930 /// Note that the iterator includes all the possible combination of
6931 /// destination `SockAddr`s, even those whose sending is not required now.
6932 /// In other words, this is another way for the application to recall from
6933 /// past [`PathEvent::New`] events.
6934 ///
6935 /// [`PathEvent::New`]: enum.PathEvent.html#variant.New
6936 /// [`send_on_path()`]: struct.Connection.html#method.send_on_path
6937 ///
6938 /// ## Examples:
6939 ///
6940 /// ```no_run
6941 /// # let mut out = [0; 512];
6942 /// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
6943 /// # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
6944 /// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
6945 /// # let local = socket.local_addr().unwrap();
6946 /// # let peer = "127.0.0.1:1234".parse().unwrap();
6947 /// # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
6948 /// // Iterate over possible destinations for the given local `SockAddr`.
6949 /// for dest in conn.paths_iter(local) {
6950 /// loop {
6951 /// let (write, send_info) =
6952 /// match conn.send_on_path(&mut out, Some(local), Some(dest)) {
6953 /// Ok(v) => v,
6954 ///
6955 /// Err(quiche::Error::Done) => {
6956 /// // Done writing for this destination.
6957 /// break;
6958 /// },
6959 ///
6960 /// Err(e) => {
6961 /// // An error occurred, handle it.
6962 /// break;
6963 /// },
6964 /// };
6965 ///
6966 /// socket.send_to(&out[..write], &send_info.to).unwrap();
6967 /// }
6968 /// }
6969 /// # Ok::<(), quiche::Error>(())
6970 /// ```
6971 #[inline]
6972 pub fn paths_iter(&self, from: SocketAddr) -> SocketAddrIter {
6973 // Instead of trying to identify whether packets will be sent on the
6974 // given 4-tuple, simply filter paths that cannot be used.
6975 SocketAddrIter {
6976 sockaddrs: self
6977 .paths
6978 .iter()
6979 .filter(|(_, p)| p.active_dcid_seq.is_some())
6980 .filter(|(_, p)| p.usable() || p.probing_required())
6981 .filter(|(_, p)| p.local_addr() == from)
6982 .map(|(_, p)| p.peer_addr())
6983 .collect(),
6984
6985 index: 0,
6986 }
6987 }
6988
6989 /// Closes the connection with the given error and reason.
6990 ///
6991 /// The `app` parameter specifies whether an application close should be
6992 /// sent to the peer. Otherwise a normal connection close is sent.
6993 ///
6994 /// If `app` is true but the connection is not in a state that is safe to
6995 /// send an application error (not established nor in early data), in
6996 /// accordance with [RFC
6997 /// 9000](https://www.rfc-editor.org/rfc/rfc9000.html#section-10.2.3-3), the
6998 /// error code is changed to APPLICATION_ERROR and the reason phrase is
6999 /// cleared.
7000 ///
7001 /// Returns [`Done`] if the connection had already been closed.
7002 ///
7003 /// Note that the connection will not be closed immediately. An application
7004 /// should continue calling the [`recv()`], [`send()`], [`timeout()`] and
7005 /// [`on_timeout()`] methods as normal, until the [`is_closed()`] method
7006 /// returns `true`.
7007 ///
7008 /// [`Done`]: enum.Error.html#variant.Done
7009 /// [`recv()`]: struct.Connection.html#method.recv
7010 /// [`send()`]: struct.Connection.html#method.send
7011 /// [`timeout()`]: struct.Connection.html#method.timeout
7012 /// [`on_timeout()`]: struct.Connection.html#method.on_timeout
7013 /// [`is_closed()`]: struct.Connection.html#method.is_closed
7014 pub fn close(&mut self, app: bool, err: u64, reason: &[u8]) -> Result<()> {
7015 if self.is_closed() || self.is_draining() {
7016 return Err(Error::Done);
7017 }
7018
7019 if self.local_error.is_some() {
7020 return Err(Error::Done);
7021 }
7022
7023 let is_safe_to_send_app_data =
7024 self.is_established() || self.is_in_early_data();
7025
7026 if app && !is_safe_to_send_app_data {
7027 // Clear error information.
7028 self.local_error = Some(ConnectionError {
7029 is_app: false,
7030 error_code: 0x0c,
7031 reason: vec![],
7032 });
7033 } else {
7034 self.local_error = Some(ConnectionError {
7035 is_app: app,
7036 error_code: err,
7037 reason: reason.to_vec(),
7038 });
7039 }
7040
7041 // When no packet was successfully processed close connection immediately.
7042 if self.recv_count == 0 {
7043 self.mark_closed();
7044 }
7045
7046 Ok(())
7047 }
7048
7049 /// Returns a string uniquely representing the connection.
7050 ///
7051 /// This can be used for logging purposes to differentiate between multiple
7052 /// connections.
7053 #[inline]
7054 pub fn trace_id(&self) -> &str {
7055 &self.trace_id
7056 }
7057
7058 /// Returns the negotiated ALPN protocol.
7059 ///
7060 /// If no protocol has been negotiated, the returned value is empty.
7061 #[inline]
7062 pub fn application_proto(&self) -> &[u8] {
7063 self.alpn.as_ref()
7064 }
7065
7066 /// Returns the server name requested by the client.
7067 #[inline]
7068 pub fn server_name(&self) -> Option<&str> {
7069 self.handshake.server_name()
7070 }
7071
7072 /// Returns the peer's leaf certificate (if any) as a DER-encoded buffer.
7073 #[inline]
7074 pub fn peer_cert(&self) -> Option<&[u8]> {
7075 self.handshake.peer_cert()
7076 }
7077
7078 /// Returns the peer's certificate chain (if any) as a vector of DER-encoded
7079 /// buffers.
7080 ///
7081 /// The certificate at index 0 is the peer's leaf certificate, the other
7082 /// certificates (if any) are the chain certificate authorities used to
7083 /// sign the leaf certificate.
7084 #[inline]
7085 pub fn peer_cert_chain(&self) -> Option<Vec<&[u8]>> {
7086 self.handshake.peer_cert_chain()
7087 }
7088
7089 /// Returns the serialized cryptographic session for the connection.
7090 ///
7091 /// This can be used by a client to cache a connection's session, and resume
7092 /// it later using the [`set_session()`] method.
7093 ///
7094 /// [`set_session()`]: struct.Connection.html#method.set_session
7095 #[inline]
7096 pub fn session(&self) -> Option<&[u8]> {
7097 self.session.as_deref()
7098 }
7099
7100 /// Returns the source connection ID.
7101 ///
7102 /// When there are multiple IDs, and if there is an active path, the ID used
7103 /// on that path is returned. Otherwise the oldest ID is returned.
7104 ///
7105 /// Note that the value returned can change throughout the connection's
7106 /// lifetime.
7107 #[inline]
7108 pub fn source_id(&self) -> ConnectionId<'_> {
7109 if let Ok(path) = self.paths.get_active() {
7110 if let Some(active_scid_seq) = path.active_scid_seq {
7111 if let Ok(e) = self.ids.get_scid(active_scid_seq) {
7112 return ConnectionId::from_ref(e.cid.as_ref());
7113 }
7114 }
7115 }
7116
7117 let e = self.ids.oldest_scid();
7118 ConnectionId::from_ref(e.cid.as_ref())
7119 }
7120
7121 /// Returns all active source connection IDs.
7122 ///
7123 /// An iterator is returned for all active IDs (i.e. ones that have not
7124 /// been explicitly retired yet).
7125 #[inline]
7126 pub fn source_ids(&self) -> impl Iterator<Item = &ConnectionId<'_>> {
7127 self.ids.scids_iter()
7128 }
7129
7130 /// Returns the destination connection ID.
7131 ///
7132 /// Note that the value returned can change throughout the connection's
7133 /// lifetime.
7134 #[inline]
7135 pub fn destination_id(&self) -> ConnectionId<'_> {
7136 if let Ok(path) = self.paths.get_active() {
7137 if let Some(active_dcid_seq) = path.active_dcid_seq {
7138 if let Ok(e) = self.ids.get_dcid(active_dcid_seq) {
7139 return ConnectionId::from_ref(e.cid.as_ref());
7140 }
7141 }
7142 }
7143
7144 let e = self.ids.oldest_dcid();
7145 ConnectionId::from_ref(e.cid.as_ref())
7146 }
7147
7148 /// Returns the PMTU for the active path if it exists.
7149 ///
7150 /// This requires no additonal packets to be sent but simply checks if PMTUD
7151 /// has completed and has found a valid PMTU.
7152 #[inline]
7153 pub fn pmtu(&self) -> Option<usize> {
7154 if let Ok(path) = self.paths.get_active() {
7155 path.pmtud.as_ref().and_then(|pmtud| pmtud.get_pmtu())
7156 } else {
7157 None
7158 }
7159 }
7160
7161 /// Revalidates the PMTU for the active path by sending a new probe packet
7162 /// of PMTU size. If the probe is dropped PMTUD will restart and find a new
7163 /// valid PMTU.
7164 #[inline]
7165 pub fn revalidate_pmtu(&mut self) {
7166 if let Ok(active_path) = self.paths.get_active_mut() {
7167 if let Some(pmtud) = active_path.pmtud.as_mut() {
7168 pmtud.revalidate_pmtu();
7169 }
7170 }
7171 }
7172
7173 /// Returns true if the connection handshake is complete.
7174 #[inline]
7175 pub fn is_established(&self) -> bool {
7176 self.handshake_completed
7177 }
7178
7179 /// Returns true if the connection is resumed.
7180 #[inline]
7181 pub fn is_resumed(&self) -> bool {
7182 self.handshake.is_resumed()
7183 }
7184
7185 /// Returns true if the connection has a pending handshake that has
7186 /// progressed enough to send or receive early data.
7187 #[inline]
7188 pub fn is_in_early_data(&self) -> bool {
7189 self.handshake.is_in_early_data()
7190 }
7191
7192 /// Returns the early data reason for the connection.
7193 ///
7194 /// This status can be useful for logging and debugging. See [BoringSSL]
7195 /// documentation for a definition of the reasons.
7196 ///
7197 /// [BoringSSL]: https://commondatastorage.googleapis.com/chromium-boringssl-docs/ssl.h.html#ssl_early_data_reason_t
7198 #[inline]
7199 pub fn early_data_reason(&self) -> u32 {
7200 self.handshake.early_data_reason()
7201 }
7202
7203 /// Returns whether there is stream or DATAGRAM data available to read.
7204 #[inline]
7205 pub fn is_readable(&self) -> bool {
7206 self.streams.has_readable() || self.dgram_recv_front_len().is_some()
7207 }
7208
7209 /// Returns whether the network path with local address `from` and remote
7210 /// address `peer` has been validated.
7211 ///
7212 /// If the 4-tuple does not exist over the connection, returns an
7213 /// [`InvalidState`].
7214 ///
7215 /// [`InvalidState`]: enum.Error.html#variant.InvalidState
7216 pub fn is_path_validated(
7217 &self, from: SocketAddr, to: SocketAddr,
7218 ) -> Result<bool> {
7219 let pid = self
7220 .paths
7221 .path_id_from_addrs(&(from, to))
7222 .ok_or(Error::InvalidState)?;
7223
7224 Ok(self.paths.get(pid)?.validated())
7225 }
7226
7227 /// Returns true if the connection is draining.
7228 ///
7229 /// If this returns `true`, the connection object cannot yet be dropped, but
7230 /// no new application data can be sent or received. An application should
7231 /// continue calling the [`recv()`], [`timeout()`], and [`on_timeout()`]
7232 /// methods as normal, until the [`is_closed()`] method returns `true`.
7233 ///
7234 /// In contrast, once `is_draining()` returns `true`, calling [`send()`]
7235 /// is not required because no new outgoing packets will be generated.
7236 ///
7237 /// [`recv()`]: struct.Connection.html#method.recv
7238 /// [`send()`]: struct.Connection.html#method.send
7239 /// [`timeout()`]: struct.Connection.html#method.timeout
7240 /// [`on_timeout()`]: struct.Connection.html#method.on_timeout
7241 /// [`is_closed()`]: struct.Connection.html#method.is_closed
7242 #[inline]
7243 pub fn is_draining(&self) -> bool {
7244 self.draining_timer.is_some()
7245 }
7246
7247 /// Returns true if the connection is closed.
7248 ///
7249 /// If this returns true, the connection object can be dropped.
7250 #[inline]
7251 pub fn is_closed(&self) -> bool {
7252 self.closed
7253 }
7254
7255 /// Returns true if the connection was closed due to the idle timeout.
7256 #[inline]
7257 pub fn is_timed_out(&self) -> bool {
7258 self.timed_out
7259 }
7260
7261 /// Returns the error received from the peer, if any.
7262 ///
7263 /// Note that a `Some` return value does not necessarily imply
7264 /// [`is_closed()`] or any other connection state.
7265 ///
7266 /// [`is_closed()`]: struct.Connection.html#method.is_closed
7267 #[inline]
7268 pub fn peer_error(&self) -> Option<&ConnectionError> {
7269 self.peer_error.as_ref()
7270 }
7271
7272 /// Returns the error [`close()`] was called with, or internally
7273 /// created quiche errors, if any.
7274 ///
7275 /// Note that a `Some` return value does not necessarily imply
7276 /// [`is_closed()`] or any other connection state.
7277 /// `Some` also does not guarantee that the error has been sent to
7278 /// or received by the peer.
7279 ///
7280 /// [`close()`]: struct.Connection.html#method.close
7281 /// [`is_closed()`]: struct.Connection.html#method.is_closed
7282 #[inline]
7283 pub fn local_error(&self) -> Option<&ConnectionError> {
7284 self.local_error.as_ref()
7285 }
7286
7287 /// Collects and returns statistics about the connection.
7288 #[inline]
7289 pub fn stats(&self) -> Stats {
7290 Stats {
7291 recv: self.recv_count,
7292 sent: self.sent_count,
7293 lost: self.lost_count,
7294 spurious_lost: self.spurious_lost_count,
7295 retrans: self.retrans_count,
7296 sent_bytes: self.sent_bytes,
7297 recv_bytes: self.recv_bytes,
7298 acked_bytes: self.acked_bytes,
7299 lost_bytes: self.lost_bytes,
7300 stream_retrans_bytes: self.stream_retrans_bytes,
7301 dgram_recv: self.dgram_recv_count,
7302 dgram_sent: self.dgram_sent_count,
7303 paths_count: self.paths.len(),
7304 reset_stream_count_local: self.reset_stream_local_count,
7305 stopped_stream_count_local: self.stopped_stream_local_count,
7306 reset_stream_count_remote: self.reset_stream_remote_count,
7307 stopped_stream_count_remote: self.stopped_stream_remote_count,
7308 data_blocked_sent_count: self.data_blocked_sent_count,
7309 stream_data_blocked_sent_count: self.stream_data_blocked_sent_count,
7310 data_blocked_recv_count: self.data_blocked_recv_count,
7311 stream_data_blocked_recv_count: self.stream_data_blocked_recv_count,
7312 path_challenge_rx_count: self.path_challenge_rx_count,
7313 bytes_in_flight_duration: self.bytes_in_flight_duration(),
7314 tx_buffered_state: self.tx_buffered_state,
7315 }
7316 }
7317
7318 /// Returns the sum of the durations when each path in the
7319 /// connection was actively sending bytes or waiting for acks.
7320 /// Note that this could result in a duration that is longer than
7321 /// the actual connection duration in cases where multiple paths
7322 /// are active for extended periods of time. In practice only 1
7323 /// path is typically active at a time.
7324 /// TODO revisit computation if in the future multiple paths are
7325 /// often active at the same time.
7326 fn bytes_in_flight_duration(&self) -> Duration {
7327 self.paths.iter().fold(Duration::ZERO, |acc, (_, path)| {
7328 acc + path.bytes_in_flight_duration()
7329 })
7330 }
7331
7332 /// Returns reference to peer's transport parameters. Returns `None` if we
7333 /// have not yet processed the peer's transport parameters.
7334 pub fn peer_transport_params(&self) -> Option<&TransportParams> {
7335 if !self.parsed_peer_transport_params {
7336 return None;
7337 }
7338
7339 Some(&self.peer_transport_params)
7340 }
7341
7342 /// Collects and returns statistics about each known path for the
7343 /// connection.
7344 pub fn path_stats(&self) -> impl Iterator<Item = PathStats> + '_ {
7345 self.paths.iter().map(|(_, p)| p.stats())
7346 }
7347
7348 /// Returns whether or not this is a server-side connection.
7349 pub fn is_server(&self) -> bool {
7350 self.is_server
7351 }
7352
7353 fn encode_transport_params(&mut self) -> Result<()> {
7354 self.handshake.set_quic_transport_params(
7355 &self.local_transport_params,
7356 self.is_server,
7357 )
7358 }
7359
7360 fn parse_peer_transport_params(
7361 &mut self, peer_params: TransportParams,
7362 ) -> Result<()> {
7363 // Validate initial_source_connection_id.
7364 match &peer_params.initial_source_connection_id {
7365 Some(v) if v != &self.destination_id() =>
7366 return Err(Error::InvalidTransportParam),
7367
7368 Some(_) => (),
7369
7370 // initial_source_connection_id must be sent by
7371 // both endpoints.
7372 None => return Err(Error::InvalidTransportParam),
7373 }
7374
7375 // Validate original_destination_connection_id.
7376 if let Some(odcid) = &self.odcid {
7377 match &peer_params.original_destination_connection_id {
7378 Some(v) if v != odcid =>
7379 return Err(Error::InvalidTransportParam),
7380
7381 Some(_) => (),
7382
7383 // original_destination_connection_id must be
7384 // sent by the server.
7385 None if !self.is_server =>
7386 return Err(Error::InvalidTransportParam),
7387
7388 None => (),
7389 }
7390 }
7391
7392 // Validate retry_source_connection_id.
7393 if let Some(rscid) = &self.rscid {
7394 match &peer_params.retry_source_connection_id {
7395 Some(v) if v != rscid =>
7396 return Err(Error::InvalidTransportParam),
7397
7398 Some(_) => (),
7399
7400 // retry_source_connection_id must be sent by
7401 // the server.
7402 None => return Err(Error::InvalidTransportParam),
7403 }
7404 }
7405
7406 self.process_peer_transport_params(peer_params)?;
7407
7408 self.parsed_peer_transport_params = true;
7409
7410 Ok(())
7411 }
7412
7413 fn process_peer_transport_params(
7414 &mut self, peer_params: TransportParams,
7415 ) -> Result<()> {
7416 self.max_tx_data = peer_params.initial_max_data;
7417
7418 // Update send capacity.
7419 self.update_tx_cap();
7420
7421 self.streams
7422 .update_peer_max_streams_bidi(peer_params.initial_max_streams_bidi);
7423 self.streams
7424 .update_peer_max_streams_uni(peer_params.initial_max_streams_uni);
7425
7426 let max_ack_delay = Duration::from_millis(peer_params.max_ack_delay);
7427
7428 self.recovery_config.max_ack_delay = max_ack_delay;
7429
7430 let active_path = self.paths.get_active_mut()?;
7431
7432 active_path.recovery.update_max_ack_delay(max_ack_delay);
7433
7434 if active_path
7435 .pmtud
7436 .as_ref()
7437 .map(|pmtud| pmtud.should_probe())
7438 .unwrap_or(false)
7439 {
7440 active_path.recovery.pmtud_update_max_datagram_size(
7441 active_path
7442 .pmtud
7443 .as_mut()
7444 .expect("PMTUD existence verified above")
7445 .get_probe_size()
7446 .min(peer_params.max_udp_payload_size as usize),
7447 );
7448 } else {
7449 active_path.recovery.update_max_datagram_size(
7450 peer_params.max_udp_payload_size as usize,
7451 );
7452 }
7453
7454 // Record the max_active_conn_id parameter advertised by the peer.
7455 self.ids
7456 .set_source_conn_id_limit(peer_params.active_conn_id_limit);
7457
7458 self.peer_transport_params = peer_params;
7459
7460 Ok(())
7461 }
7462
7463 /// Continues the handshake.
7464 ///
7465 /// If the connection is already established, it does nothing.
7466 fn do_handshake(&mut self, now: Instant) -> Result<()> {
7467 let mut ex_data = tls::ExData {
7468 application_protos: &self.application_protos,
7469
7470 crypto_ctx: &mut self.crypto_ctx,
7471
7472 session: &mut self.session,
7473
7474 local_error: &mut self.local_error,
7475
7476 keylog: self.keylog.as_mut(),
7477
7478 trace_id: &self.trace_id,
7479
7480 local_transport_params: self.local_transport_params.clone(),
7481
7482 recovery_config: self.recovery_config,
7483
7484 tx_cap_factor: self.tx_cap_factor,
7485
7486 pmtud: None,
7487
7488 is_server: self.is_server,
7489 };
7490
7491 if self.handshake_completed {
7492 return self.handshake.process_post_handshake(&mut ex_data);
7493 }
7494
7495 match self.handshake.do_handshake(&mut ex_data) {
7496 Ok(_) => (),
7497
7498 Err(Error::Done) => {
7499 // Apply in-handshake configuration from callbacks if the path's
7500 // Recovery module can still be reinitilized.
7501 if self
7502 .paths
7503 .get_active()
7504 .map(|p| p.can_reinit_recovery())
7505 .unwrap_or(false)
7506 {
7507 if ex_data.recovery_config != self.recovery_config {
7508 if let Ok(path) = self.paths.get_active_mut() {
7509 self.recovery_config = ex_data.recovery_config;
7510 path.reinit_recovery(&self.recovery_config);
7511 }
7512 }
7513
7514 if ex_data.tx_cap_factor != self.tx_cap_factor {
7515 self.tx_cap_factor = ex_data.tx_cap_factor;
7516 }
7517
7518 if let Some((discover, max_probes)) = ex_data.pmtud {
7519 self.paths.set_discover_pmtu_on_existing_paths(
7520 discover,
7521 self.recovery_config.max_send_udp_payload_size,
7522 max_probes,
7523 );
7524 }
7525
7526 if ex_data.local_transport_params !=
7527 self.local_transport_params
7528 {
7529 self.streams.set_max_streams_bidi(
7530 ex_data
7531 .local_transport_params
7532 .initial_max_streams_bidi,
7533 );
7534
7535 self.local_transport_params =
7536 ex_data.local_transport_params;
7537 }
7538 }
7539
7540 // Try to parse transport parameters as soon as the first flight
7541 // of handshake data is processed.
7542 //
7543 // This is potentially dangerous as the handshake hasn't been
7544 // completed yet, though it's required to be able to send data
7545 // in 0.5 RTT.
7546 let raw_params = self.handshake.quic_transport_params();
7547
7548 if !self.parsed_peer_transport_params && !raw_params.is_empty() {
7549 let peer_params = TransportParams::decode(
7550 raw_params,
7551 self.is_server,
7552 self.peer_transport_params_track_unknown,
7553 )?;
7554
7555 self.parse_peer_transport_params(peer_params)?;
7556 }
7557
7558 return Ok(());
7559 },
7560
7561 Err(e) => return Err(e),
7562 };
7563
7564 self.handshake_completed = self.handshake.is_completed();
7565
7566 self.alpn = self.handshake.alpn_protocol().to_vec();
7567
7568 let raw_params = self.handshake.quic_transport_params();
7569
7570 if !self.parsed_peer_transport_params && !raw_params.is_empty() {
7571 let peer_params = TransportParams::decode(
7572 raw_params,
7573 self.is_server,
7574 self.peer_transport_params_track_unknown,
7575 )?;
7576
7577 self.parse_peer_transport_params(peer_params)?;
7578 }
7579
7580 if self.handshake_completed {
7581 // The handshake is considered confirmed at the server when the
7582 // handshake completes, at which point we can also drop the
7583 // handshake epoch.
7584 if self.is_server {
7585 self.handshake_confirmed = true;
7586
7587 self.drop_epoch_state(packet::Epoch::Handshake, now);
7588 }
7589
7590 // Once the handshake is completed there's no point in processing
7591 // 0-RTT packets anymore, so clear the buffer now.
7592 self.undecryptable_pkts.clear();
7593
7594 trace!("{} connection established: proto={:?} cipher={:?} curve={:?} sigalg={:?} resumed={} {:?}",
7595 &self.trace_id,
7596 std::str::from_utf8(self.application_proto()),
7597 self.handshake.cipher(),
7598 self.handshake.curve(),
7599 self.handshake.sigalg(),
7600 self.handshake.is_resumed(),
7601 self.peer_transport_params);
7602 }
7603
7604 Ok(())
7605 }
7606
7607 /// Selects the packet type for the next outgoing packet.
7608 fn write_pkt_type(&self, send_pid: usize) -> Result<Type> {
7609 // On error send packet in the latest epoch available, but only send
7610 // 1-RTT ones when the handshake is completed.
7611 if self
7612 .local_error
7613 .as_ref()
7614 .is_some_and(|conn_err| !conn_err.is_app)
7615 {
7616 let epoch = match self.handshake.write_level() {
7617 crypto::Level::Initial => packet::Epoch::Initial,
7618 crypto::Level::ZeroRTT => unreachable!(),
7619 crypto::Level::Handshake => packet::Epoch::Handshake,
7620 crypto::Level::OneRTT => packet::Epoch::Application,
7621 };
7622
7623 if !self.handshake_confirmed {
7624 match epoch {
7625 // Downgrade the epoch to Handshake as the handshake is not
7626 // completed yet.
7627 packet::Epoch::Application => return Ok(Type::Handshake),
7628
7629 // Downgrade the epoch to Initial as the remote peer might
7630 // not be able to decrypt handshake packets yet.
7631 packet::Epoch::Handshake
7632 if self.crypto_ctx[packet::Epoch::Initial].has_keys() =>
7633 return Ok(Type::Initial),
7634
7635 _ => (),
7636 };
7637 }
7638
7639 return Ok(Type::from_epoch(epoch));
7640 }
7641
7642 for &epoch in packet::Epoch::epochs(
7643 packet::Epoch::Initial..=packet::Epoch::Application,
7644 ) {
7645 let crypto_ctx = &self.crypto_ctx[epoch];
7646 let pkt_space = &self.pkt_num_spaces[epoch];
7647
7648 // Only send packets in a space when we have the send keys for it.
7649 if crypto_ctx.crypto_seal.is_none() {
7650 continue;
7651 }
7652
7653 // We are ready to send data for this packet number space.
7654 if crypto_ctx.data_available() || pkt_space.ready() {
7655 return Ok(Type::from_epoch(epoch));
7656 }
7657
7658 // There are lost frames in this packet number space.
7659 for (_, p) in self.paths.iter() {
7660 if p.recovery.has_lost_frames(epoch) {
7661 return Ok(Type::from_epoch(epoch));
7662 }
7663
7664 // We need to send PTO probe packets.
7665 if p.recovery.loss_probes(epoch) > 0 {
7666 return Ok(Type::from_epoch(epoch));
7667 }
7668 }
7669 }
7670
7671 // If there are flushable, almost full or blocked streams, use the
7672 // Application epoch.
7673 let send_path = self.paths.get(send_pid)?;
7674 if (self.is_established() || self.is_in_early_data()) &&
7675 (self.should_send_handshake_done() ||
7676 self.almost_full ||
7677 self.blocked_limit.is_some() ||
7678 self.dgram_send_queue.has_pending() ||
7679 self.local_error
7680 .as_ref()
7681 .is_some_and(|conn_err| conn_err.is_app) ||
7682 self.streams.should_update_max_streams_bidi() ||
7683 self.streams.should_update_max_streams_uni() ||
7684 self.streams.has_flushable() ||
7685 self.streams.has_almost_full() ||
7686 self.streams.has_blocked() ||
7687 self.streams.has_reset() ||
7688 self.streams.has_stopped() ||
7689 self.ids.has_new_scids() ||
7690 self.ids.has_retire_dcids() ||
7691 send_path
7692 .pmtud
7693 .as_ref()
7694 .is_some_and(|pmtud| pmtud.should_probe()) ||
7695 send_path.needs_ack_eliciting ||
7696 send_path.probing_required())
7697 {
7698 // Only clients can send 0-RTT packets.
7699 if !self.is_server && self.is_in_early_data() {
7700 return Ok(Type::ZeroRTT);
7701 }
7702
7703 return Ok(Type::Short);
7704 }
7705
7706 Err(Error::Done)
7707 }
7708
7709 /// Returns the mutable stream with the given ID if it exists, or creates
7710 /// a new one otherwise.
7711 fn get_or_create_stream(
7712 &mut self, id: u64, local: bool,
7713 ) -> Result<&mut stream::Stream<F>> {
7714 self.streams.get_or_create(
7715 id,
7716 &self.local_transport_params,
7717 &self.peer_transport_params,
7718 local,
7719 self.is_server,
7720 )
7721 }
7722
7723 /// Processes an incoming frame.
7724 fn process_frame(
7725 &mut self, frame: frame::Frame, hdr: &Header, recv_path_id: usize,
7726 epoch: packet::Epoch, now: Instant,
7727 ) -> Result<()> {
7728 trace!("{} rx frm {:?}", self.trace_id, frame);
7729
7730 match frame {
7731 frame::Frame::Padding { .. } => (),
7732
7733 frame::Frame::Ping { .. } => (),
7734
7735 frame::Frame::ACK {
7736 ranges, ack_delay, ..
7737 } => {
7738 let ack_delay = ack_delay
7739 .checked_mul(2_u64.pow(
7740 self.peer_transport_params.ack_delay_exponent as u32,
7741 ))
7742 .ok_or(Error::InvalidFrame)?;
7743
7744 if epoch == packet::Epoch::Handshake ||
7745 (epoch == packet::Epoch::Application &&
7746 self.is_established())
7747 {
7748 self.peer_verified_initial_address = true;
7749 }
7750
7751 let handshake_status = self.handshake_status();
7752
7753 let is_app_limited = self.delivery_rate_check_if_app_limited();
7754
7755 let largest_acked = ranges.last().expect(
7756 "ACK frames should always have at least one ack range",
7757 );
7758
7759 for (_, p) in self.paths.iter_mut() {
7760 if self.pkt_num_spaces[epoch]
7761 .largest_tx_pkt_num
7762 .is_some_and(|largest_sent| largest_sent < largest_acked)
7763 {
7764 // https://www.rfc-editor.org/rfc/rfc9000#section-13.1
7765 // An endpoint SHOULD treat receipt of an acknowledgment
7766 // for a packet it did not send as
7767 // a connection error of type PROTOCOL_VIOLATION
7768 return Err(Error::InvalidAckRange);
7769 }
7770
7771 if is_app_limited {
7772 p.recovery.delivery_rate_update_app_limited(true);
7773 }
7774
7775 let OnAckReceivedOutcome {
7776 lost_packets,
7777 lost_bytes,
7778 acked_bytes,
7779 spurious_losses,
7780 } = p.recovery.on_ack_received(
7781 &ranges,
7782 ack_delay,
7783 epoch,
7784 handshake_status,
7785 now,
7786 self.pkt_num_manager.skip_pn(),
7787 &self.trace_id,
7788 )?;
7789
7790 let skip_pn = self.pkt_num_manager.skip_pn();
7791 let largest_acked =
7792 p.recovery.get_largest_acked_on_epoch(epoch);
7793
7794 // Consider the skip_pn validated if the peer has sent an ack
7795 // for a larger pkt number.
7796 if let Some((largest_acked, skip_pn)) =
7797 largest_acked.zip(skip_pn)
7798 {
7799 if largest_acked > skip_pn {
7800 self.pkt_num_manager.set_skip_pn(None);
7801 }
7802 }
7803
7804 self.lost_count += lost_packets;
7805 self.lost_bytes += lost_bytes as u64;
7806 self.acked_bytes += acked_bytes as u64;
7807 self.spurious_lost_count += spurious_losses;
7808 }
7809 },
7810
7811 frame::Frame::ResetStream {
7812 stream_id,
7813 error_code,
7814 final_size,
7815 } => {
7816 // Peer can't send on our unidirectional streams.
7817 if !stream::is_bidi(stream_id) &&
7818 stream::is_local(stream_id, self.is_server)
7819 {
7820 return Err(Error::InvalidStreamState(stream_id));
7821 }
7822
7823 let max_rx_data_left = self.max_rx_data() - self.rx_data;
7824
7825 // Get existing stream or create a new one, but if the stream
7826 // has already been closed and collected, ignore the frame.
7827 //
7828 // This can happen if e.g. an ACK frame is lost, and the peer
7829 // retransmits another frame before it realizes that the stream
7830 // is gone.
7831 //
7832 // Note that it makes it impossible to check if the frame is
7833 // illegal, since we have no state, but since we ignore the
7834 // frame, it should be fine.
7835 let stream = match self.get_or_create_stream(stream_id, false) {
7836 Ok(v) => v,
7837
7838 Err(Error::Done) => return Ok(()),
7839
7840 Err(e) => return Err(e),
7841 };
7842
7843 let was_readable = stream.is_readable();
7844 let priority_key = Arc::clone(&stream.priority_key);
7845
7846 let stream::RecvBufResetReturn {
7847 max_data_delta,
7848 consumed_flowcontrol,
7849 } = stream.recv.reset(error_code, final_size)?;
7850
7851 if max_data_delta > max_rx_data_left {
7852 return Err(Error::FlowControl);
7853 }
7854
7855 if !was_readable && stream.is_readable() {
7856 self.streams.insert_readable(&priority_key);
7857 }
7858
7859 self.rx_data += max_data_delta;
7860 // We dropped the receive buffer, return connection level
7861 // flow-control
7862 self.flow_control.add_consumed(consumed_flowcontrol);
7863
7864 // ... and check if need to send an updated MAX_DATA frame
7865 if self.should_update_max_data() {
7866 self.almost_full = true;
7867 }
7868
7869 self.reset_stream_remote_count =
7870 self.reset_stream_remote_count.saturating_add(1);
7871 },
7872
7873 frame::Frame::StopSending {
7874 stream_id,
7875 error_code,
7876 } => {
7877 // STOP_SENDING on a receive-only stream is a fatal error.
7878 if !stream::is_local(stream_id, self.is_server) &&
7879 !stream::is_bidi(stream_id)
7880 {
7881 return Err(Error::InvalidStreamState(stream_id));
7882 }
7883
7884 // Get existing stream or create a new one, but if the stream
7885 // has already been closed and collected, ignore the frame.
7886 //
7887 // This can happen if e.g. an ACK frame is lost, and the peer
7888 // retransmits another frame before it realizes that the stream
7889 // is gone.
7890 //
7891 // Note that it makes it impossible to check if the frame is
7892 // illegal, since we have no state, but since we ignore the
7893 // frame, it should be fine.
7894 let stream = match self.get_or_create_stream(stream_id, false) {
7895 Ok(v) => v,
7896
7897 Err(Error::Done) => return Ok(()),
7898
7899 Err(e) => return Err(e),
7900 };
7901
7902 let was_writable = stream.is_writable();
7903
7904 let priority_key = Arc::clone(&stream.priority_key);
7905
7906 // Try stopping the stream.
7907 if let Ok((final_size, unsent)) = stream.send.stop(error_code) {
7908 // Claw back some flow control allowance from data that was
7909 // buffered but not actually sent before the stream was
7910 // reset.
7911 //
7912 // Note that `tx_cap` will be updated later on, so no need
7913 // to touch it here.
7914 self.tx_data = self.tx_data.saturating_sub(unsent);
7915
7916 self.tx_buffered =
7917 self.tx_buffered.saturating_sub(unsent as usize);
7918
7919 // These drops in qlog are a bit weird, but the only way to
7920 // ensure that all bytes that are moved from App to Transport
7921 // in stream_do_send are eventually moved from Transport to
7922 // Dropped. Ideally we would add a Transport to Network
7923 // transition also as a way to indicate when bytes were
7924 // transmitted vs dropped without ever being sent.
7925 qlog_with_type!(QLOG_DATA_MV, self.qlog, q, {
7926 let ev_data =
7927 EventData::DataMoved(qlog::events::quic::DataMoved {
7928 stream_id: Some(stream_id),
7929 offset: Some(final_size),
7930 length: Some(unsent),
7931 from: Some(DataRecipient::Transport),
7932 to: Some(DataRecipient::Dropped),
7933 ..Default::default()
7934 });
7935
7936 q.add_event_data_with_instant(ev_data, now).ok();
7937 });
7938
7939 self.streams.insert_reset(stream_id, error_code, final_size);
7940
7941 if !was_writable {
7942 self.streams.insert_writable(&priority_key);
7943 }
7944
7945 self.stopped_stream_remote_count =
7946 self.stopped_stream_remote_count.saturating_add(1);
7947 self.reset_stream_local_count =
7948 self.reset_stream_local_count.saturating_add(1);
7949 }
7950 },
7951
7952 frame::Frame::Crypto { data } => {
7953 if data.max_off() >= MAX_CRYPTO_STREAM_OFFSET {
7954 return Err(Error::CryptoBufferExceeded);
7955 }
7956
7957 // Push the data to the stream so it can be re-ordered.
7958 self.crypto_ctx[epoch].crypto_stream.recv.write(data)?;
7959
7960 // Feed crypto data to the TLS state, if there's data
7961 // available at the expected offset.
7962 let mut crypto_buf = [0; 512];
7963
7964 let level = crypto::Level::from_epoch(epoch);
7965
7966 let stream = &mut self.crypto_ctx[epoch].crypto_stream;
7967
7968 while let Ok((read, _)) = stream.recv.emit(&mut crypto_buf) {
7969 let recv_buf = &crypto_buf[..read];
7970 self.handshake.provide_data(level, recv_buf)?;
7971 }
7972
7973 self.do_handshake(now)?;
7974 },
7975
7976 frame::Frame::CryptoHeader { .. } => unreachable!(),
7977
7978 // TODO: implement stateless retry
7979 frame::Frame::NewToken { .. } =>
7980 if self.is_server {
7981 return Err(Error::InvalidPacket);
7982 },
7983
7984 frame::Frame::Stream { stream_id, data } => {
7985 // Peer can't send on our unidirectional streams.
7986 if !stream::is_bidi(stream_id) &&
7987 stream::is_local(stream_id, self.is_server)
7988 {
7989 return Err(Error::InvalidStreamState(stream_id));
7990 }
7991
7992 let max_rx_data_left = self.max_rx_data() - self.rx_data;
7993
7994 // Get existing stream or create a new one, but if the stream
7995 // has already been closed and collected, ignore the frame.
7996 //
7997 // This can happen if e.g. an ACK frame is lost, and the peer
7998 // retransmits another frame before it realizes that the stream
7999 // is gone.
8000 //
8001 // Note that it makes it impossible to check if the frame is
8002 // illegal, since we have no state, but since we ignore the
8003 // frame, it should be fine.
8004 let stream = match self.get_or_create_stream(stream_id, false) {
8005 Ok(v) => v,
8006
8007 Err(Error::Done) => return Ok(()),
8008
8009 Err(e) => return Err(e),
8010 };
8011
8012 // Check for the connection-level flow control limit.
8013 let max_off_delta =
8014 data.max_off().saturating_sub(stream.recv.max_off());
8015
8016 if max_off_delta > max_rx_data_left {
8017 return Err(Error::FlowControl);
8018 }
8019
8020 let was_readable = stream.is_readable();
8021 let priority_key = Arc::clone(&stream.priority_key);
8022
8023 let was_draining = stream.recv.is_draining();
8024
8025 stream.recv.write(data)?;
8026
8027 if !was_readable && stream.is_readable() {
8028 self.streams.insert_readable(&priority_key);
8029 }
8030
8031 self.rx_data += max_off_delta;
8032
8033 if was_draining {
8034 // When a stream is in draining state it will not queue
8035 // incoming data for the application to read, so consider
8036 // the received data as consumed, which might trigger a flow
8037 // control update.
8038 self.flow_control.add_consumed(max_off_delta);
8039
8040 if self.should_update_max_data() {
8041 self.almost_full = true;
8042 }
8043 }
8044 },
8045
8046 frame::Frame::StreamHeader { .. } => unreachable!(),
8047
8048 frame::Frame::MaxData { max } => {
8049 self.max_tx_data = cmp::max(self.max_tx_data, max);
8050 },
8051
8052 frame::Frame::MaxStreamData { stream_id, max } => {
8053 // Peer can't receive on its own unidirectional streams.
8054 if !stream::is_bidi(stream_id) &&
8055 !stream::is_local(stream_id, self.is_server)
8056 {
8057 return Err(Error::InvalidStreamState(stream_id));
8058 }
8059
8060 // Get existing stream or create a new one, but if the stream
8061 // has already been closed and collected, ignore the frame.
8062 //
8063 // This can happen if e.g. an ACK frame is lost, and the peer
8064 // retransmits another frame before it realizes that the stream
8065 // is gone.
8066 //
8067 // Note that it makes it impossible to check if the frame is
8068 // illegal, since we have no state, but since we ignore the
8069 // frame, it should be fine.
8070 let stream = match self.get_or_create_stream(stream_id, false) {
8071 Ok(v) => v,
8072
8073 Err(Error::Done) => return Ok(()),
8074
8075 Err(e) => return Err(e),
8076 };
8077
8078 let was_flushable = stream.is_flushable();
8079
8080 stream.send.update_max_data(max);
8081
8082 let writable = stream.is_writable();
8083
8084 let priority_key = Arc::clone(&stream.priority_key);
8085
8086 // If the stream is now flushable push it to the flushable queue,
8087 // but only if it wasn't already queued.
8088 if stream.is_flushable() && !was_flushable {
8089 let priority_key = Arc::clone(&stream.priority_key);
8090 self.streams.insert_flushable(&priority_key);
8091 }
8092
8093 if writable {
8094 self.streams.insert_writable(&priority_key);
8095 }
8096 },
8097
8098 frame::Frame::MaxStreamsBidi { max } => {
8099 if max > MAX_STREAM_ID {
8100 return Err(Error::InvalidFrame);
8101 }
8102
8103 self.streams.update_peer_max_streams_bidi(max);
8104 },
8105
8106 frame::Frame::MaxStreamsUni { max } => {
8107 if max > MAX_STREAM_ID {
8108 return Err(Error::InvalidFrame);
8109 }
8110
8111 self.streams.update_peer_max_streams_uni(max);
8112 },
8113
8114 frame::Frame::DataBlocked { .. } => {
8115 self.data_blocked_recv_count =
8116 self.data_blocked_recv_count.saturating_add(1);
8117 },
8118
8119 frame::Frame::StreamDataBlocked { .. } => {
8120 self.stream_data_blocked_recv_count =
8121 self.stream_data_blocked_recv_count.saturating_add(1);
8122 },
8123
8124 frame::Frame::StreamsBlockedBidi { limit } => {
8125 if limit > MAX_STREAM_ID {
8126 return Err(Error::InvalidFrame);
8127 }
8128 },
8129
8130 frame::Frame::StreamsBlockedUni { limit } => {
8131 if limit > MAX_STREAM_ID {
8132 return Err(Error::InvalidFrame);
8133 }
8134 },
8135
8136 frame::Frame::NewConnectionId {
8137 seq_num,
8138 retire_prior_to,
8139 conn_id,
8140 reset_token,
8141 } => {
8142 if self.ids.zero_length_dcid() {
8143 return Err(Error::InvalidState);
8144 }
8145
8146 let mut retired_path_ids = SmallVec::new();
8147
8148 // Retire pending path IDs before propagating the error code to
8149 // make sure retired connection IDs are not in use anymore.
8150 let new_dcid_res = self.ids.new_dcid(
8151 conn_id.into(),
8152 seq_num,
8153 u128::from_be_bytes(reset_token),
8154 retire_prior_to,
8155 &mut retired_path_ids,
8156 );
8157
8158 for (dcid_seq, pid) in retired_path_ids {
8159 let path = self.paths.get_mut(pid)?;
8160
8161 // Maybe the path already switched to another DCID.
8162 if path.active_dcid_seq != Some(dcid_seq) {
8163 continue;
8164 }
8165
8166 if let Some(new_dcid_seq) =
8167 self.ids.lowest_available_dcid_seq()
8168 {
8169 path.active_dcid_seq = Some(new_dcid_seq);
8170
8171 self.ids.link_dcid_to_path_id(new_dcid_seq, pid)?;
8172
8173 trace!(
8174 "{} path ID {} changed DCID: old seq num {} new seq num {}",
8175 self.trace_id, pid, dcid_seq, new_dcid_seq,
8176 );
8177 } else {
8178 // We cannot use this path anymore for now.
8179 path.active_dcid_seq = None;
8180
8181 trace!(
8182 "{} path ID {} cannot be used; DCID seq num {} has been retired",
8183 self.trace_id, pid, dcid_seq,
8184 );
8185 }
8186 }
8187
8188 // Propagate error (if any) now...
8189 new_dcid_res?;
8190 },
8191
8192 frame::Frame::RetireConnectionId { seq_num } => {
8193 if self.ids.zero_length_scid() {
8194 return Err(Error::InvalidState);
8195 }
8196
8197 if let Some(pid) = self.ids.retire_scid(seq_num, &hdr.dcid)? {
8198 let path = self.paths.get_mut(pid)?;
8199
8200 // Maybe we already linked a new SCID to that path.
8201 if path.active_scid_seq == Some(seq_num) {
8202 // XXX: We do not remove unused paths now, we instead
8203 // wait until we need to maintain more paths than the
8204 // host is willing to.
8205 path.active_scid_seq = None;
8206 }
8207 }
8208 },
8209
8210 frame::Frame::PathChallenge { data } => {
8211 self.path_challenge_rx_count += 1;
8212
8213 self.paths
8214 .get_mut(recv_path_id)?
8215 .on_challenge_received(data);
8216 },
8217
8218 frame::Frame::PathResponse { data } => {
8219 self.paths.on_response_received(data)?;
8220 },
8221
8222 frame::Frame::ConnectionClose {
8223 error_code, reason, ..
8224 } => {
8225 self.peer_error = Some(ConnectionError {
8226 is_app: false,
8227 error_code,
8228 reason,
8229 });
8230
8231 let path = self.paths.get_active()?;
8232 self.draining_timer = Some(now + (path.recovery.pto() * 3));
8233 },
8234
8235 frame::Frame::ApplicationClose { error_code, reason } => {
8236 self.peer_error = Some(ConnectionError {
8237 is_app: true,
8238 error_code,
8239 reason,
8240 });
8241
8242 let path = self.paths.get_active()?;
8243 self.draining_timer = Some(now + (path.recovery.pto() * 3));
8244 },
8245
8246 frame::Frame::HandshakeDone => {
8247 if self.is_server {
8248 return Err(Error::InvalidPacket);
8249 }
8250
8251 self.peer_verified_initial_address = true;
8252
8253 self.handshake_confirmed = true;
8254
8255 // Once the handshake is confirmed, we can drop Handshake keys.
8256 self.drop_epoch_state(packet::Epoch::Handshake, now);
8257 },
8258
8259 frame::Frame::Datagram { data } => {
8260 // Close the connection if DATAGRAMs are not enabled.
8261 // quiche always advertises support for 64K sized DATAGRAM
8262 // frames, as recommended by the standard, so we don't need a
8263 // size check.
8264 if !self.dgram_enabled() {
8265 return Err(Error::InvalidState);
8266 }
8267
8268 // If recv queue is full, discard oldest
8269 if self.dgram_recv_queue.is_full() {
8270 self.dgram_recv_queue.pop();
8271 }
8272
8273 self.dgram_recv_queue.push(data)?;
8274
8275 self.dgram_recv_count = self.dgram_recv_count.saturating_add(1);
8276
8277 let path = self.paths.get_mut(recv_path_id)?;
8278 path.dgram_recv_count = path.dgram_recv_count.saturating_add(1);
8279 },
8280
8281 frame::Frame::DatagramHeader { .. } => unreachable!(),
8282 }
8283
8284 Ok(())
8285 }
8286
8287 /// Drops the keys and recovery state for the given epoch.
8288 fn drop_epoch_state(&mut self, epoch: packet::Epoch, now: Instant) {
8289 let crypto_ctx = &mut self.crypto_ctx[epoch];
8290 if crypto_ctx.crypto_open.is_none() {
8291 return;
8292 }
8293 crypto_ctx.clear();
8294 self.pkt_num_spaces[epoch].clear();
8295
8296 let handshake_status = self.handshake_status();
8297 for (_, p) in self.paths.iter_mut() {
8298 p.recovery
8299 .on_pkt_num_space_discarded(epoch, handshake_status, now);
8300 }
8301
8302 trace!("{} dropped epoch {} state", self.trace_id, epoch);
8303 }
8304
8305 /// Returns true if the connection-level flow control needs to be updated.
8306 ///
8307 /// This happens when the new max data limit is at least double the amount
8308 /// of data that can be received before blocking.
8309 fn should_update_max_data(&self) -> bool {
8310 self.flow_control.should_update_max_data()
8311 }
8312
8313 /// Returns the connection level flow control limit.
8314 fn max_rx_data(&self) -> u64 {
8315 self.flow_control.max_data()
8316 }
8317
8318 /// Returns true if the HANDSHAKE_DONE frame needs to be sent.
8319 fn should_send_handshake_done(&self) -> bool {
8320 self.is_established() && !self.handshake_done_sent && self.is_server
8321 }
8322
8323 /// Returns the idle timeout value.
8324 ///
8325 /// `None` is returned if both end-points disabled the idle timeout.
8326 fn idle_timeout(&self) -> Option<Duration> {
8327 // If the transport parameter is set to 0, then the respective endpoint
8328 // decided to disable the idle timeout. If both are disabled we should
8329 // not set any timeout.
8330 if self.local_transport_params.max_idle_timeout == 0 &&
8331 self.peer_transport_params.max_idle_timeout == 0
8332 {
8333 return None;
8334 }
8335
8336 // If the local endpoint or the peer disabled the idle timeout, use the
8337 // other peer's value, otherwise use the minimum of the two values.
8338 let idle_timeout = if self.local_transport_params.max_idle_timeout == 0 {
8339 self.peer_transport_params.max_idle_timeout
8340 } else if self.peer_transport_params.max_idle_timeout == 0 {
8341 self.local_transport_params.max_idle_timeout
8342 } else {
8343 cmp::min(
8344 self.local_transport_params.max_idle_timeout,
8345 self.peer_transport_params.max_idle_timeout,
8346 )
8347 };
8348
8349 let path_pto = match self.paths.get_active() {
8350 Ok(p) => p.recovery.pto(),
8351 Err(_) => Duration::ZERO,
8352 };
8353
8354 let idle_timeout = Duration::from_millis(idle_timeout);
8355 let idle_timeout = cmp::max(idle_timeout, 3 * path_pto);
8356
8357 Some(idle_timeout)
8358 }
8359
8360 /// Returns the connection's handshake status for use in loss recovery.
8361 fn handshake_status(&self) -> recovery::HandshakeStatus {
8362 recovery::HandshakeStatus {
8363 has_handshake_keys: self.crypto_ctx[packet::Epoch::Handshake]
8364 .has_keys(),
8365
8366 peer_verified_address: self.peer_verified_initial_address,
8367
8368 completed: self.is_established(),
8369 }
8370 }
8371
8372 /// Updates send capacity.
8373 fn update_tx_cap(&mut self) {
8374 let cwin_available = match self.paths.get_active() {
8375 Ok(p) => p.recovery.cwnd_available() as u64,
8376 Err(_) => 0,
8377 };
8378
8379 let cap =
8380 cmp::min(cwin_available, self.max_tx_data - self.tx_data) as usize;
8381 self.tx_cap = (cap as f64 * self.tx_cap_factor).ceil() as usize;
8382 }
8383
8384 fn delivery_rate_check_if_app_limited(&self) -> bool {
8385 // Enter the app-limited phase of delivery rate when these conditions
8386 // are met:
8387 //
8388 // - The remaining capacity is higher than available bytes in cwnd (there
8389 // is more room to send).
8390 // - New data since the last send() is smaller than available bytes in
8391 // cwnd (we queued less than what we can send).
8392 // - There is room to send more data in cwnd.
8393 //
8394 // In application-limited phases the transmission rate is limited by the
8395 // application rather than the congestion control algorithm.
8396 //
8397 // Note that this is equivalent to CheckIfApplicationLimited() from the
8398 // delivery rate draft. This is also separate from `recovery.app_limited`
8399 // and only applies to delivery rate calculation.
8400 let cwin_available = self
8401 .paths
8402 .iter()
8403 .filter(|&(_, p)| p.active())
8404 .map(|(_, p)| p.recovery.cwnd_available())
8405 .sum();
8406
8407 ((self.tx_buffered + self.dgram_send_queue_byte_size()) < cwin_available) &&
8408 (self.tx_data.saturating_sub(self.last_tx_data)) <
8409 cwin_available as u64 &&
8410 cwin_available > 0
8411 }
8412
8413 fn check_tx_buffered_invariant(&mut self) {
8414 // tx_buffered should track bytes queued in the stream buffers
8415 // and unacked retransmitable bytes in the network.
8416 // If tx_buffered > 0 mark the tx_buffered_state if there are no
8417 // flushable streams and there no inflight bytes.
8418 //
8419 // It is normal to have tx_buffered == 0 while there are inflight bytes
8420 // since not QUIC frames are retransmittable; inflight tracks all bytes
8421 // on the network which are subject to congestion control.
8422 if self.tx_buffered > 0 &&
8423 !self.streams.has_flushable() &&
8424 !self
8425 .paths
8426 .iter()
8427 .any(|(_, p)| p.recovery.bytes_in_flight() > 0)
8428 {
8429 self.tx_buffered_state = TxBufferTrackingState::Inconsistent;
8430 }
8431 }
8432
8433 fn set_initial_dcid(
8434 &mut self, cid: ConnectionId<'static>, reset_token: Option<u128>,
8435 path_id: usize,
8436 ) -> Result<()> {
8437 self.ids.set_initial_dcid(cid, reset_token, Some(path_id));
8438 self.paths.get_mut(path_id)?.active_dcid_seq = Some(0);
8439
8440 Ok(())
8441 }
8442
8443 /// Selects the path that the incoming packet belongs to, or creates a new
8444 /// one if no existing path matches.
8445 fn get_or_create_recv_path_id(
8446 &mut self, recv_pid: Option<usize>, dcid: &ConnectionId, buf_len: usize,
8447 info: &RecvInfo,
8448 ) -> Result<usize> {
8449 let ids = &mut self.ids;
8450
8451 let (in_scid_seq, mut in_scid_pid) =
8452 ids.find_scid_seq(dcid).ok_or(Error::InvalidState)?;
8453
8454 if let Some(recv_pid) = recv_pid {
8455 // If the path observes a change of SCID used, note it.
8456 let recv_path = self.paths.get_mut(recv_pid)?;
8457
8458 let cid_entry =
8459 recv_path.active_scid_seq.and_then(|v| ids.get_scid(v).ok());
8460
8461 if cid_entry.map(|e| &e.cid) != Some(dcid) {
8462 let incoming_cid_entry = ids.get_scid(in_scid_seq)?;
8463
8464 let prev_recv_pid =
8465 incoming_cid_entry.path_id.unwrap_or(recv_pid);
8466
8467 if prev_recv_pid != recv_pid {
8468 trace!(
8469 "{} peer reused CID {:?} from path {} on path {}",
8470 self.trace_id,
8471 dcid,
8472 prev_recv_pid,
8473 recv_pid
8474 );
8475
8476 // TODO: reset congestion control.
8477 }
8478
8479 trace!(
8480 "{} path ID {} now see SCID with seq num {}",
8481 self.trace_id,
8482 recv_pid,
8483 in_scid_seq
8484 );
8485
8486 recv_path.active_scid_seq = Some(in_scid_seq);
8487 ids.link_scid_to_path_id(in_scid_seq, recv_pid)?;
8488 }
8489
8490 return Ok(recv_pid);
8491 }
8492
8493 // This is a new 4-tuple. See if the CID has not been assigned on
8494 // another path.
8495
8496 // Ignore this step if are using zero-length SCID.
8497 if ids.zero_length_scid() {
8498 in_scid_pid = None;
8499 }
8500
8501 if let Some(in_scid_pid) = in_scid_pid {
8502 // This CID has been used by another path. If we have the
8503 // room to do so, create a new `Path` structure holding this
8504 // new 4-tuple. Otherwise, drop the packet.
8505 let old_path = self.paths.get_mut(in_scid_pid)?;
8506 let old_local_addr = old_path.local_addr();
8507 let old_peer_addr = old_path.peer_addr();
8508
8509 trace!(
8510 "{} reused CID seq {} of ({},{}) (path {}) on ({},{})",
8511 self.trace_id,
8512 in_scid_seq,
8513 old_local_addr,
8514 old_peer_addr,
8515 in_scid_pid,
8516 info.to,
8517 info.from
8518 );
8519
8520 // Notify the application.
8521 self.paths.notify_event(PathEvent::ReusedSourceConnectionId(
8522 in_scid_seq,
8523 (old_local_addr, old_peer_addr),
8524 (info.to, info.from),
8525 ));
8526 }
8527
8528 // This is a new path using an unassigned CID; create it!
8529 let mut path = path::Path::new(
8530 info.to,
8531 info.from,
8532 &self.recovery_config,
8533 self.path_challenge_recv_max_queue_len,
8534 false,
8535 None,
8536 );
8537
8538 path.max_send_bytes = buf_len * self.max_amplification_factor;
8539 path.active_scid_seq = Some(in_scid_seq);
8540
8541 // Automatically probes the new path.
8542 path.request_validation();
8543
8544 let pid = self.paths.insert_path(path, self.is_server)?;
8545
8546 // Do not record path reuse.
8547 if in_scid_pid.is_none() {
8548 ids.link_scid_to_path_id(in_scid_seq, pid)?;
8549 }
8550
8551 Ok(pid)
8552 }
8553
8554 /// Selects the path on which the next packet must be sent.
8555 fn get_send_path_id(
8556 &self, from: Option<SocketAddr>, to: Option<SocketAddr>,
8557 ) -> Result<usize> {
8558 // A probing packet must be sent, but only if the connection is fully
8559 // established.
8560 if self.is_established() {
8561 let mut probing = self
8562 .paths
8563 .iter()
8564 .filter(|(_, p)| from.is_none() || Some(p.local_addr()) == from)
8565 .filter(|(_, p)| to.is_none() || Some(p.peer_addr()) == to)
8566 .filter(|(_, p)| p.active_dcid_seq.is_some())
8567 .filter(|(_, p)| p.probing_required())
8568 .map(|(pid, _)| pid);
8569
8570 if let Some(pid) = probing.next() {
8571 return Ok(pid);
8572 }
8573 }
8574
8575 if let Some((pid, p)) = self.paths.get_active_with_pid() {
8576 if from.is_some() && Some(p.local_addr()) != from {
8577 return Err(Error::Done);
8578 }
8579
8580 if to.is_some() && Some(p.peer_addr()) != to {
8581 return Err(Error::Done);
8582 }
8583
8584 return Ok(pid);
8585 };
8586
8587 Err(Error::InvalidState)
8588 }
8589
8590 /// Sets the path with identifier 'path_id' to be active.
8591 fn set_active_path(&mut self, path_id: usize, now: Instant) -> Result<()> {
8592 if let Ok(old_active_path) = self.paths.get_active_mut() {
8593 for &e in packet::Epoch::epochs(
8594 packet::Epoch::Initial..=packet::Epoch::Application,
8595 ) {
8596 let (lost_packets, lost_bytes) = old_active_path
8597 .recovery
8598 .on_path_change(e, now, &self.trace_id);
8599
8600 self.lost_count += lost_packets;
8601 self.lost_bytes += lost_bytes as u64;
8602 }
8603 }
8604
8605 self.paths.set_active_path(path_id)
8606 }
8607
8608 /// Handles potential connection migration.
8609 fn on_peer_migrated(
8610 &mut self, new_pid: usize, disable_dcid_reuse: bool, now: Instant,
8611 ) -> Result<()> {
8612 let active_path_id = self.paths.get_active_path_id()?;
8613
8614 if active_path_id == new_pid {
8615 return Ok(());
8616 }
8617
8618 self.set_active_path(new_pid, now)?;
8619
8620 let no_spare_dcid =
8621 self.paths.get_mut(new_pid)?.active_dcid_seq.is_none();
8622
8623 if no_spare_dcid && !disable_dcid_reuse {
8624 self.paths.get_mut(new_pid)?.active_dcid_seq =
8625 self.paths.get_mut(active_path_id)?.active_dcid_seq;
8626 }
8627
8628 Ok(())
8629 }
8630
8631 /// Creates a new client-side path.
8632 fn create_path_on_client(
8633 &mut self, local_addr: SocketAddr, peer_addr: SocketAddr,
8634 ) -> Result<usize> {
8635 if self.is_server {
8636 return Err(Error::InvalidState);
8637 }
8638
8639 // If we use zero-length SCID and go over our local active CID limit,
8640 // the `insert_path()` call will raise an error.
8641 if !self.ids.zero_length_scid() && self.ids.available_scids() == 0 {
8642 return Err(Error::OutOfIdentifiers);
8643 }
8644
8645 // Do we have a spare DCID? If we are using zero-length DCID, just use
8646 // the default having sequence 0 (note that if we exceed our local CID
8647 // limit, the `insert_path()` call will raise an error.
8648 let dcid_seq = if self.ids.zero_length_dcid() {
8649 0
8650 } else {
8651 self.ids
8652 .lowest_available_dcid_seq()
8653 .ok_or(Error::OutOfIdentifiers)?
8654 };
8655
8656 let mut path = path::Path::new(
8657 local_addr,
8658 peer_addr,
8659 &self.recovery_config,
8660 self.path_challenge_recv_max_queue_len,
8661 false,
8662 None,
8663 );
8664 path.active_dcid_seq = Some(dcid_seq);
8665
8666 let pid = self
8667 .paths
8668 .insert_path(path, false)
8669 .map_err(|_| Error::OutOfIdentifiers)?;
8670 self.ids.link_dcid_to_path_id(dcid_seq, pid)?;
8671
8672 Ok(pid)
8673 }
8674
8675 // Marks the connection as closed and does any related tidyup.
8676 fn mark_closed(&mut self) {
8677 #[cfg(feature = "qlog")]
8678 {
8679 let cc = match (self.is_established(), self.timed_out, &self.peer_error, &self.local_error) {
8680 (false, _, _, _) => qlog::events::connectivity::ConnectionClosed {
8681 owner: Some(TransportOwner::Local),
8682 connection_code: None,
8683 application_code: None,
8684 internal_code: None,
8685 reason: Some("Failed to establish connection".to_string()),
8686 trigger: Some(qlog::events::connectivity::ConnectionClosedTrigger::HandshakeTimeout)
8687 },
8688
8689 (true, true, _, _) => qlog::events::connectivity::ConnectionClosed {
8690 owner: Some(TransportOwner::Local),
8691 connection_code: None,
8692 application_code: None,
8693 internal_code: None,
8694 reason: Some("Idle timeout".to_string()),
8695 trigger: Some(qlog::events::connectivity::ConnectionClosedTrigger::IdleTimeout)
8696 },
8697
8698 (true, false, Some(peer_error), None) => {
8699 let (connection_code, application_code, trigger) = if peer_error.is_app {
8700 (None, Some(qlog::events::ApplicationErrorCode::Value(peer_error.error_code)), None)
8701 } else {
8702 let trigger = if peer_error.error_code == WireErrorCode::NoError as u64 {
8703 Some(qlog::events::connectivity::ConnectionClosedTrigger::Clean)
8704 } else {
8705 Some(qlog::events::connectivity::ConnectionClosedTrigger::Error)
8706 };
8707
8708 (Some(qlog::events::ConnectionErrorCode::Value(peer_error.error_code)), None, trigger)
8709 };
8710
8711 qlog::events::connectivity::ConnectionClosed {
8712 owner: Some(TransportOwner::Remote),
8713 connection_code,
8714 application_code,
8715 internal_code: None,
8716 reason: Some(String::from_utf8_lossy(&peer_error.reason).to_string()),
8717 trigger,
8718 }
8719 },
8720
8721 (true, false, None, Some(local_error)) => {
8722 let (connection_code, application_code, trigger) = if local_error.is_app {
8723 (None, Some(qlog::events::ApplicationErrorCode::Value(local_error.error_code)), None)
8724 } else {
8725 let trigger = if local_error.error_code == WireErrorCode::NoError as u64 {
8726 Some(qlog::events::connectivity::ConnectionClosedTrigger::Clean)
8727 } else {
8728 Some(qlog::events::connectivity::ConnectionClosedTrigger::Error)
8729 };
8730
8731 (Some(qlog::events::ConnectionErrorCode::Value(local_error.error_code)), None, trigger)
8732 };
8733
8734 qlog::events::connectivity::ConnectionClosed {
8735 owner: Some(TransportOwner::Local),
8736 connection_code,
8737 application_code,
8738 internal_code: None,
8739 reason: Some(String::from_utf8_lossy(&local_error.reason).to_string()),
8740 trigger,
8741 }
8742 },
8743
8744 _ => qlog::events::connectivity::ConnectionClosed {
8745 owner: None,
8746 connection_code: None,
8747 application_code: None,
8748 internal_code: None,
8749 reason: None,
8750 trigger: None,
8751 },
8752 };
8753
8754 qlog_with_type!(QLOG_CONNECTION_CLOSED, self.qlog, q, {
8755 let ev_data = EventData::ConnectionClosed(cc);
8756
8757 q.add_event_data_now(ev_data).ok();
8758 });
8759 self.qlog.streamer = None;
8760 }
8761 self.closed = true;
8762 }
8763}
8764
8765#[cfg(feature = "boringssl-boring-crate")]
8766impl<F: BufFactory> AsMut<boring::ssl::SslRef> for Connection<F> {
8767 fn as_mut(&mut self) -> &mut boring::ssl::SslRef {
8768 self.handshake.ssl_mut()
8769 }
8770}
8771
8772/// Maps an `Error` to `Error::Done`, or itself.
8773///
8774/// When a received packet that hasn't yet been authenticated triggers a failure
8775/// it should, in most cases, be ignored, instead of raising a connection error,
8776/// to avoid potential man-in-the-middle and man-on-the-side attacks.
8777///
8778/// However, if no other packet was previously received, the connection should
8779/// indeed be closed as the received packet might just be network background
8780/// noise, and it shouldn't keep resources occupied indefinitely.
8781///
8782/// This function maps an error to `Error::Done` to ignore a packet failure
8783/// without aborting the connection, except when no other packet was previously
8784/// received, in which case the error itself is returned, but only on the
8785/// server-side as the client will already have armed the idle timer.
8786///
8787/// This must only be used for errors preceding packet authentication. Failures
8788/// happening after a packet has been authenticated should still cause the
8789/// connection to be aborted.
8790fn drop_pkt_on_err(
8791 e: Error, recv_count: usize, is_server: bool, trace_id: &str,
8792) -> Error {
8793 // On the server, if no other packet has been successfully processed, abort
8794 // the connection to avoid keeping the connection open when only junk is
8795 // received.
8796 if is_server && recv_count == 0 {
8797 return e;
8798 }
8799
8800 trace!("{trace_id} dropped invalid packet");
8801
8802 // Ignore other invalid packets that haven't been authenticated to prevent
8803 // man-in-the-middle and man-on-the-side attacks.
8804 Error::Done
8805}
8806
8807struct AddrTupleFmt(SocketAddr, SocketAddr);
8808
8809impl std::fmt::Display for AddrTupleFmt {
8810 fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
8811 let AddrTupleFmt(src, dst) = &self;
8812
8813 if src.ip().is_unspecified() || dst.ip().is_unspecified() {
8814 return Ok(());
8815 }
8816
8817 f.write_fmt(format_args!("src:{src} dst:{dst}"))
8818 }
8819}
8820
8821/// Statistics about the connection.
8822///
8823/// A connection's statistics can be collected using the [`stats()`] method.
8824///
8825/// [`stats()`]: struct.Connection.html#method.stats
8826#[derive(Clone, Default)]
8827pub struct Stats {
8828 /// The number of QUIC packets received.
8829 pub recv: usize,
8830
8831 /// The number of QUIC packets sent.
8832 pub sent: usize,
8833
8834 /// The number of QUIC packets that were lost.
8835 pub lost: usize,
8836
8837 /// The number of QUIC packets that were marked as lost but later acked.
8838 pub spurious_lost: usize,
8839
8840 /// The number of sent QUIC packets with retransmitted data.
8841 pub retrans: usize,
8842
8843 /// The number of sent bytes.
8844 pub sent_bytes: u64,
8845
8846 /// The number of received bytes.
8847 pub recv_bytes: u64,
8848
8849 /// The number of bytes sent acked.
8850 pub acked_bytes: u64,
8851
8852 /// The number of bytes sent lost.
8853 pub lost_bytes: u64,
8854
8855 /// The number of stream bytes retransmitted.
8856 pub stream_retrans_bytes: u64,
8857
8858 /// The number of DATAGRAM frames received.
8859 pub dgram_recv: usize,
8860
8861 /// The number of DATAGRAM frames sent.
8862 pub dgram_sent: usize,
8863
8864 /// The number of known paths for the connection.
8865 pub paths_count: usize,
8866
8867 /// The number of streams reset by local.
8868 pub reset_stream_count_local: u64,
8869
8870 /// The number of streams stopped by local.
8871 pub stopped_stream_count_local: u64,
8872
8873 /// The number of streams reset by remote.
8874 pub reset_stream_count_remote: u64,
8875
8876 /// The number of streams stopped by remote.
8877 pub stopped_stream_count_remote: u64,
8878
8879 /// The number of DATA_BLOCKED frames sent due to hitting the connection
8880 /// flow control limit.
8881 pub data_blocked_sent_count: u64,
8882
8883 /// The number of STREAM_DATA_BLOCKED frames sent due to a stream hitting
8884 /// the stream flow control limit.
8885 pub stream_data_blocked_sent_count: u64,
8886
8887 /// The number of DATA_BLOCKED frames received from the remote.
8888 pub data_blocked_recv_count: u64,
8889
8890 /// The number of STREAM_DATA_BLOCKED frames received from the remote.
8891 pub stream_data_blocked_recv_count: u64,
8892
8893 /// The total number of PATH_CHALLENGE frames that were received.
8894 pub path_challenge_rx_count: u64,
8895
8896 /// Total duration during which this side of the connection was
8897 /// actively sending bytes or waiting for those bytes to be acked.
8898 pub bytes_in_flight_duration: Duration,
8899
8900 /// Health state of the connection's tx_buffered.
8901 pub tx_buffered_state: TxBufferTrackingState,
8902}
8903
8904impl std::fmt::Debug for Stats {
8905 #[inline]
8906 fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
8907 write!(
8908 f,
8909 "recv={} sent={} lost={} retrans={}",
8910 self.recv, self.sent, self.lost, self.retrans,
8911 )?;
8912
8913 write!(
8914 f,
8915 " sent_bytes={} recv_bytes={} lost_bytes={}",
8916 self.sent_bytes, self.recv_bytes, self.lost_bytes,
8917 )?;
8918
8919 Ok(())
8920 }
8921}
8922
8923#[doc(hidden)]
8924pub mod test_utils;
8925
8926#[cfg(test)]
8927mod tests;
8928
8929pub use crate::packet::ConnectionId;
8930pub use crate::packet::Header;
8931pub use crate::packet::Type;
8932
8933pub use crate::path::PathEvent;
8934pub use crate::path::PathStats;
8935pub use crate::path::SocketAddrIter;
8936
8937pub use crate::recovery::BbrBwLoReductionStrategy;
8938pub use crate::recovery::BbrParams;
8939pub use crate::recovery::CongestionControlAlgorithm;
8940pub use crate::recovery::StartupExit;
8941pub use crate::recovery::StartupExitReason;
8942
8943pub use crate::stream::StreamIter;
8944
8945pub use crate::transport_params::TransportParams;
8946pub use crate::transport_params::UnknownTransportParameter;
8947pub use crate::transport_params::UnknownTransportParameterIterator;
8948pub use crate::transport_params::UnknownTransportParameters;
8949
8950pub use crate::range_buf::BufFactory;
8951pub use crate::range_buf::BufSplit;
8952
8953pub use crate::error::ConnectionError;
8954pub use crate::error::Error;
8955pub use crate::error::Result;
8956pub use crate::error::WireErrorCode;
8957
8958mod cid;
8959mod crypto;
8960mod dgram;
8961mod error;
8962#[cfg(feature = "ffi")]
8963mod ffi;
8964mod flowcontrol;
8965mod frame;
8966pub mod h3;
8967mod minmax;
8968mod packet;
8969mod path;
8970mod pmtud;
8971mod rand;
8972mod range_buf;
8973mod ranges;
8974mod recovery;
8975mod stream;
8976mod tls;
8977mod transport_params;