quiche/lib.rs
1// Copyright (C) 2018-2019, Cloudflare, Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// * Redistributions in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
16// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
17// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
18// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
19// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
20// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
21// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
22// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
23// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
24// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
27//! 🥧 Savoury implementation of the QUIC transport protocol and HTTP/3.
28//!
29//! [quiche] is an implementation of the QUIC transport protocol and HTTP/3 as
30//! specified by the [IETF]. It provides a low level API for processing QUIC
31//! packets and handling connection state. The application is responsible for
32//! providing I/O (e.g. sockets handling) as well as an event loop with support
33//! for timers.
34//!
35//! [quiche]: https://github.com/cloudflare/quiche/
36//! [ietf]: https://quicwg.org/
37//!
38//! ## Configuring connections
39//!
40//! The first step in establishing a QUIC connection using quiche is creating a
41//! [`Config`] object:
42//!
43//! ```
44//! let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
45//! config.set_application_protos(&[b"example-proto"]);
46//!
47//! // Additional configuration specific to application and use case...
48//! # Ok::<(), quiche::Error>(())
49//! ```
50//!
51//! The [`Config`] object controls important aspects of the QUIC connection such
52//! as QUIC version, ALPN IDs, flow control, congestion control, idle timeout
53//! and other properties or features.
54//!
55//! QUIC is a general-purpose transport protocol and there are several
56//! configuration properties where there is no reasonable default value. For
57//! example, the permitted number of concurrent streams of any particular type
58//! is dependent on the application running over QUIC, and other use-case
59//! specific concerns.
60//!
61//! quiche defaults several properties to zero, applications most likely need
62//! to set these to something else to satisfy their needs using the following:
63//!
64//! - [`set_initial_max_streams_bidi()`]
65//! - [`set_initial_max_streams_uni()`]
66//! - [`set_initial_max_data()`]
67//! - [`set_initial_max_stream_data_bidi_local()`]
68//! - [`set_initial_max_stream_data_bidi_remote()`]
69//! - [`set_initial_max_stream_data_uni()`]
70//!
71//! [`Config`] also holds TLS configuration. This can be changed by mutators on
72//! the an existing object, or by constructing a TLS context manually and
73//! creating a configuration using [`with_boring_ssl_ctx_builder()`].
74//!
75//! A configuration object can be shared among multiple connections.
76//!
77//! ### Connection setup
78//!
79//! On the client-side the [`connect()`] utility function can be used to create
80//! a new connection, while [`accept()`] is for servers:
81//!
82//! ```
83//! # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
84//! # let server_name = "quic.tech";
85//! # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
86//! # let peer = "127.0.0.1:1234".parse().unwrap();
87//! # let local = "127.0.0.1:4321".parse().unwrap();
88//! // Client connection.
89//! let conn =
90//! quiche::connect(Some(&server_name), &scid, local, peer, &mut config)?;
91//!
92//! // Server connection.
93//! # let peer = "127.0.0.1:1234".parse().unwrap();
94//! # let local = "127.0.0.1:4321".parse().unwrap();
95//! let conn = quiche::accept(&scid, None, local, peer, &mut config)?;
96//! # Ok::<(), quiche::Error>(())
97//! ```
98//!
99//! In both cases, the application is responsible for generating a new source
100//! connection ID that will be used to identify the new connection.
101//!
102//! The application also need to pass the address of the remote peer of the
103//! connection: in the case of a client that would be the address of the server
104//! it is trying to connect to, and for a server that is the address of the
105//! client that initiated the connection.
106//!
107//! ## Handling incoming packets
108//!
109//! Using the connection's [`recv()`] method the application can process
110//! incoming packets that belong to that connection from the network:
111//!
112//! ```no_run
113//! # let mut buf = [0; 512];
114//! # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
115//! # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
116//! # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
117//! # let peer = "127.0.0.1:1234".parse().unwrap();
118//! # let local = "127.0.0.1:4321".parse().unwrap();
119//! # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
120//! let to = socket.local_addr().unwrap();
121//!
122//! loop {
123//! let (read, from) = socket.recv_from(&mut buf).unwrap();
124//!
125//! let recv_info = quiche::RecvInfo { from, to };
126//!
127//! let read = match conn.recv(&mut buf[..read], recv_info) {
128//! Ok(v) => v,
129//!
130//! Err(quiche::Error::Done) => {
131//! // Done reading.
132//! break;
133//! },
134//!
135//! Err(e) => {
136//! // An error occurred, handle it.
137//! break;
138//! },
139//! };
140//! }
141//! # Ok::<(), quiche::Error>(())
142//! ```
143//!
144//! The application has to pass a [`RecvInfo`] structure in order to provide
145//! additional information about the received packet (such as the address it
146//! was received from).
147//!
148//! ## Generating outgoing packets
149//!
150//! Outgoing packet are generated using the connection's [`send()`] method
151//! instead:
152//!
153//! ```no_run
154//! # let mut out = [0; 512];
155//! # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
156//! # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
157//! # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
158//! # let peer = "127.0.0.1:1234".parse().unwrap();
159//! # let local = "127.0.0.1:4321".parse().unwrap();
160//! # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
161//! loop {
162//! let (write, send_info) = match conn.send(&mut out) {
163//! Ok(v) => v,
164//!
165//! Err(quiche::Error::Done) => {
166//! // Done writing.
167//! break;
168//! },
169//!
170//! Err(e) => {
171//! // An error occurred, handle it.
172//! break;
173//! },
174//! };
175//!
176//! socket.send_to(&out[..write], &send_info.to).unwrap();
177//! }
178//! # Ok::<(), quiche::Error>(())
179//! ```
180//!
181//! The application will be provided with a [`SendInfo`] structure providing
182//! additional information about the newly created packet (such as the address
183//! the packet should be sent to).
184//!
185//! When packets are sent, the application is responsible for maintaining a
186//! timer to react to time-based connection events. The timer expiration can be
187//! obtained using the connection's [`timeout()`] method.
188//!
189//! ```
190//! # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
191//! # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
192//! # let peer = "127.0.0.1:1234".parse().unwrap();
193//! # let local = "127.0.0.1:4321".parse().unwrap();
194//! # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
195//! let timeout = conn.timeout();
196//! # Ok::<(), quiche::Error>(())
197//! ```
198//!
199//! The application is responsible for providing a timer implementation, which
200//! can be specific to the operating system or networking framework used. When
201//! a timer expires, the connection's [`on_timeout()`] method should be called,
202//! after which additional packets might need to be sent on the network:
203//!
204//! ```no_run
205//! # let mut out = [0; 512];
206//! # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
207//! # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
208//! # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
209//! # let peer = "127.0.0.1:1234".parse().unwrap();
210//! # let local = "127.0.0.1:4321".parse().unwrap();
211//! # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
212//! // Timeout expired, handle it.
213//! conn.on_timeout();
214//!
215//! // Send more packets as needed after timeout.
216//! loop {
217//! let (write, send_info) = match conn.send(&mut out) {
218//! Ok(v) => v,
219//!
220//! Err(quiche::Error::Done) => {
221//! // Done writing.
222//! break;
223//! },
224//!
225//! Err(e) => {
226//! // An error occurred, handle it.
227//! break;
228//! },
229//! };
230//!
231//! socket.send_to(&out[..write], &send_info.to).unwrap();
232//! }
233//! # Ok::<(), quiche::Error>(())
234//! ```
235//!
236//! ### Pacing
237//!
238//! It is recommended that applications [pace] sending of outgoing packets to
239//! avoid creating packet bursts that could cause short-term congestion and
240//! losses in the network.
241//!
242//! quiche exposes pacing hints for outgoing packets through the [`at`] field
243//! of the [`SendInfo`] structure that is returned by the [`send()`] method.
244//! This field represents the time when a specific packet should be sent into
245//! the network.
246//!
247//! Applications can use these hints by artificially delaying the sending of
248//! packets through platform-specific mechanisms (such as the [`SO_TXTIME`]
249//! socket option on Linux), or custom methods (for example by using user-space
250//! timers).
251//!
252//! [pace]: https://datatracker.ietf.org/doc/html/rfc9002#section-7.7
253//! [`SO_TXTIME`]: https://man7.org/linux/man-pages/man8/tc-etf.8.html
254//!
255//! ## Sending and receiving stream data
256//!
257//! After some back and forth, the connection will complete its handshake and
258//! will be ready for sending or receiving application data.
259//!
260//! Data can be sent on a stream by using the [`stream_send()`] method:
261//!
262//! ```no_run
263//! # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
264//! # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
265//! # let peer = "127.0.0.1:1234".parse().unwrap();
266//! # let local = "127.0.0.1:4321".parse().unwrap();
267//! # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
268//! if conn.is_established() {
269//! // Handshake completed, send some data on stream 0.
270//! conn.stream_send(0, b"hello", true)?;
271//! }
272//! # Ok::<(), quiche::Error>(())
273//! ```
274//!
275//! The application can check whether there are any readable streams by using
276//! the connection's [`readable()`] method, which returns an iterator over all
277//! the streams that have outstanding data to read.
278//!
279//! The [`stream_recv()`] method can then be used to retrieve the application
280//! data from the readable stream:
281//!
282//! ```no_run
283//! # let mut buf = [0; 512];
284//! # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
285//! # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
286//! # let peer = "127.0.0.1:1234".parse().unwrap();
287//! # let local = "127.0.0.1:4321".parse().unwrap();
288//! # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
289//! if conn.is_established() {
290//! // Iterate over readable streams.
291//! for stream_id in conn.readable() {
292//! // Stream is readable, read until there's no more data.
293//! while let Ok((read, fin)) = conn.stream_recv(stream_id, &mut buf) {
294//! println!("Got {} bytes on stream {}", read, stream_id);
295//! }
296//! }
297//! }
298//! # Ok::<(), quiche::Error>(())
299//! ```
300//!
301//! ## HTTP/3
302//!
303//! The quiche [HTTP/3 module] provides a high level API for sending and
304//! receiving HTTP requests and responses on top of the QUIC transport protocol.
305//!
306//! [`Config`]: https://docs.quic.tech/quiche/struct.Config.html
307//! [`set_initial_max_streams_bidi()`]: https://docs.rs/quiche/latest/quiche/struct.Config.html#method.set_initial_max_streams_bidi
308//! [`set_initial_max_streams_uni()`]: https://docs.rs/quiche/latest/quiche/struct.Config.html#method.set_initial_max_streams_uni
309//! [`set_initial_max_data()`]: https://docs.rs/quiche/latest/quiche/struct.Config.html#method.set_initial_max_data
310//! [`set_initial_max_stream_data_bidi_local()`]: https://docs.rs/quiche/latest/quiche/struct.Config.html#method.set_initial_max_stream_data_bidi_local
311//! [`set_initial_max_stream_data_bidi_remote()`]: https://docs.rs/quiche/latest/quiche/struct.Config.html#method.set_initial_max_stream_data_bidi_remote
312//! [`set_initial_max_stream_data_uni()`]: https://docs.rs/quiche/latest/quiche/struct.Config.html#method.set_initial_max_stream_data_uni
313//! [`with_boring_ssl_ctx_builder()`]: https://docs.quic.tech/quiche/struct.Config.html#method.with_boring_ssl_ctx_builder
314//! [`connect()`]: fn.connect.html
315//! [`accept()`]: fn.accept.html
316//! [`recv()`]: struct.Connection.html#method.recv
317//! [`RecvInfo`]: struct.RecvInfo.html
318//! [`send()`]: struct.Connection.html#method.send
319//! [`SendInfo`]: struct.SendInfo.html
320//! [`at`]: struct.SendInfo.html#structfield.at
321//! [`timeout()`]: struct.Connection.html#method.timeout
322//! [`on_timeout()`]: struct.Connection.html#method.on_timeout
323//! [`stream_send()`]: struct.Connection.html#method.stream_send
324//! [`readable()`]: struct.Connection.html#method.readable
325//! [`stream_recv()`]: struct.Connection.html#method.stream_recv
326//! [HTTP/3 module]: h3/index.html
327//!
328//! ## Congestion Control
329//!
330//! The quiche library provides a high-level API for configuring which
331//! congestion control algorithm to use throughout the QUIC connection.
332//!
333//! When a QUIC connection is created, the application can optionally choose
334//! which CC algorithm to use. See [`CongestionControlAlgorithm`] for currently
335//! available congestion control algorithms.
336//!
337//! For example:
338//!
339//! ```
340//! let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION).unwrap();
341//! config.set_cc_algorithm(quiche::CongestionControlAlgorithm::Reno);
342//! ```
343//!
344//! Alternatively, you can configure the congestion control algorithm to use
345//! by its name.
346//!
347//! ```
348//! let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION).unwrap();
349//! config.set_cc_algorithm_name("reno").unwrap();
350//! ```
351//!
352//! Note that the CC algorithm should be configured before calling [`connect()`]
353//! or [`accept()`]. Otherwise the connection will use a default CC algorithm.
354//!
355//! [`CongestionControlAlgorithm`]: enum.CongestionControlAlgorithm.html
356//!
357//! ## Feature flags
358//!
359//! quiche defines a number of [feature flags] to reduce the amount of compiled
360//! code and dependencies:
361//!
362//! * `boringssl-vendored` (default): Build the vendored BoringSSL library.
363//!
364//! * `boringssl-boring-crate`: Use the BoringSSL library provided by the
365//! [boring] crate. It takes precedence over `boringssl-vendored` if both
366//! features are enabled.
367//!
368//! * `pkg-config-meta`: Generate pkg-config metadata file for libquiche.
369//!
370//! * `ffi`: Build and expose the FFI API.
371//!
372//! * `qlog`: Enable support for the [qlog] logging format.
373//!
374//! [feature flags]: https://doc.rust-lang.org/cargo/reference/manifest.html#the-features-section
375//! [boring]: https://crates.io/crates/boring
376//! [qlog]: https://datatracker.ietf.org/doc/html/draft-ietf-quic-qlog-main-schema
377
378#![allow(clippy::upper_case_acronyms)]
379#![warn(missing_docs)]
380#![warn(unused_qualifications)]
381#![cfg_attr(docsrs, feature(doc_cfg))]
382
383#[macro_use]
384extern crate log;
385
386use std::cmp;
387
388use std::collections::HashSet;
389use std::collections::VecDeque;
390
391use std::convert::TryInto;
392
393use std::net::SocketAddr;
394
395use std::str::FromStr;
396
397use std::sync::Arc;
398
399use std::time::Duration;
400use std::time::Instant;
401
402#[cfg(feature = "qlog")]
403use qlog::events::connectivity::ConnectivityEventType;
404#[cfg(feature = "qlog")]
405use qlog::events::connectivity::TransportOwner;
406#[cfg(feature = "qlog")]
407use qlog::events::quic::RecoveryEventType;
408#[cfg(feature = "qlog")]
409use qlog::events::quic::TransportEventType;
410#[cfg(feature = "qlog")]
411use qlog::events::DataRecipient;
412#[cfg(feature = "qlog")]
413use qlog::events::Event;
414#[cfg(feature = "qlog")]
415use qlog::events::EventData;
416#[cfg(feature = "qlog")]
417use qlog::events::EventImportance;
418#[cfg(feature = "qlog")]
419use qlog::events::EventType;
420#[cfg(feature = "qlog")]
421use qlog::events::RawInfo;
422
423use smallvec::SmallVec;
424
425use crate::range_buf::DefaultBufFactory;
426
427use crate::recovery::OnAckReceivedOutcome;
428use crate::recovery::OnLossDetectionTimeoutOutcome;
429use crate::recovery::RecoveryOps;
430use crate::recovery::ReleaseDecision;
431
432use crate::stream::StreamPriorityKey;
433
434/// The current QUIC wire version.
435pub const PROTOCOL_VERSION: u32 = PROTOCOL_VERSION_V1;
436
437/// Supported QUIC versions.
438const PROTOCOL_VERSION_V1: u32 = 0x0000_0001;
439
440/// The maximum length of a connection ID.
441pub const MAX_CONN_ID_LEN: usize = packet::MAX_CID_LEN as usize;
442
443/// The minimum length of Initial packets sent by a client.
444pub const MIN_CLIENT_INITIAL_LEN: usize = 1200;
445
446/// The default initial RTT.
447const DEFAULT_INITIAL_RTT: Duration = Duration::from_millis(333);
448
449const PAYLOAD_MIN_LEN: usize = 4;
450
451// PATH_CHALLENGE (9 bytes) + AEAD tag (16 bytes).
452const MIN_PROBING_SIZE: usize = 25;
453
454const MAX_AMPLIFICATION_FACTOR: usize = 3;
455
456// The maximum number of tracked packet number ranges that need to be acked.
457//
458// This represents more or less how many ack blocks can fit in a typical packet.
459const MAX_ACK_RANGES: usize = 68;
460
461// The highest possible stream ID allowed.
462const MAX_STREAM_ID: u64 = 1 << 60;
463
464// The default max_datagram_size used in congestion control.
465const MAX_SEND_UDP_PAYLOAD_SIZE: usize = 1200;
466
467// The default length of DATAGRAM queues.
468const DEFAULT_MAX_DGRAM_QUEUE_LEN: usize = 0;
469
470// The default length of PATH_CHALLENGE receive queue.
471const DEFAULT_MAX_PATH_CHALLENGE_RX_QUEUE_LEN: usize = 3;
472
473// The DATAGRAM standard recommends either none or 65536 as maximum DATAGRAM
474// frames size. We enforce the recommendation for forward compatibility.
475const MAX_DGRAM_FRAME_SIZE: u64 = 65536;
476
477// The length of the payload length field.
478const PAYLOAD_LENGTH_LEN: usize = 2;
479
480// The number of undecryptable that can be buffered.
481const MAX_UNDECRYPTABLE_PACKETS: usize = 10;
482
483const RESERVED_VERSION_MASK: u32 = 0xfafafafa;
484
485// The default size of the receiver connection flow control window.
486const DEFAULT_CONNECTION_WINDOW: u64 = 48 * 1024;
487
488// The maximum size of the receiver connection flow control window.
489const MAX_CONNECTION_WINDOW: u64 = 24 * 1024 * 1024;
490
491// How much larger the connection flow control window need to be larger than
492// the stream flow control window.
493const CONNECTION_WINDOW_FACTOR: f64 = 1.5;
494
495// How many probing packet timeouts do we tolerate before considering the path
496// validation as failed.
497const MAX_PROBING_TIMEOUTS: usize = 3;
498
499// The default initial congestion window size in terms of packet count.
500const DEFAULT_INITIAL_CONGESTION_WINDOW_PACKETS: usize = 10;
501
502// The maximum data offset that can be stored in a crypto stream.
503const MAX_CRYPTO_STREAM_OFFSET: u64 = 1 << 16;
504
505// The send capacity factor.
506const TX_CAP_FACTOR: f64 = 1.0;
507
508/// Ancillary information about incoming packets.
509#[derive(Clone, Copy, Debug, PartialEq, Eq)]
510pub struct RecvInfo {
511 /// The remote address the packet was received from.
512 pub from: SocketAddr,
513
514 /// The local address the packet was received on.
515 pub to: SocketAddr,
516}
517
518/// Ancillary information about outgoing packets.
519#[derive(Clone, Copy, Debug, PartialEq, Eq)]
520pub struct SendInfo {
521 /// The local address the packet should be sent from.
522 pub from: SocketAddr,
523
524 /// The remote address the packet should be sent to.
525 pub to: SocketAddr,
526
527 /// The time to send the packet out.
528 ///
529 /// See [Pacing] for more details.
530 ///
531 /// [Pacing]: index.html#pacing
532 pub at: Instant,
533}
534
535/// The side of the stream to be shut down.
536///
537/// This should be used when calling [`stream_shutdown()`].
538///
539/// [`stream_shutdown()`]: struct.Connection.html#method.stream_shutdown
540#[repr(C)]
541#[derive(PartialEq, Eq)]
542pub enum Shutdown {
543 /// Stop receiving stream data.
544 Read = 0,
545
546 /// Stop sending stream data.
547 Write = 1,
548}
549
550/// Qlog logging level.
551#[repr(C)]
552#[cfg(feature = "qlog")]
553#[cfg_attr(docsrs, doc(cfg(feature = "qlog")))]
554pub enum QlogLevel {
555 /// Logs any events of Core importance.
556 Core = 0,
557
558 /// Logs any events of Core and Base importance.
559 Base = 1,
560
561 /// Logs any events of Core, Base and Extra importance
562 Extra = 2,
563}
564
565/// Stores configuration shared between multiple connections.
566pub struct Config {
567 local_transport_params: TransportParams,
568
569 version: u32,
570
571 tls_ctx: tls::Context,
572
573 application_protos: Vec<Vec<u8>>,
574
575 grease: bool,
576
577 cc_algorithm: CongestionControlAlgorithm,
578 custom_bbr_params: Option<BbrParams>,
579 initial_congestion_window_packets: usize,
580 enable_relaxed_loss_threshold: bool,
581
582 pmtud: bool,
583
584 hystart: bool,
585
586 pacing: bool,
587 /// Send rate limit in Mbps
588 max_pacing_rate: Option<u64>,
589
590 tx_cap_factor: f64,
591
592 dgram_recv_max_queue_len: usize,
593 dgram_send_max_queue_len: usize,
594
595 path_challenge_recv_max_queue_len: usize,
596
597 max_send_udp_payload_size: usize,
598
599 max_connection_window: u64,
600 max_stream_window: u64,
601
602 max_amplification_factor: usize,
603
604 disable_dcid_reuse: bool,
605
606 track_unknown_transport_params: Option<usize>,
607
608 initial_rtt: Duration,
609}
610
611// See https://quicwg.org/base-drafts/rfc9000.html#section-15
612fn is_reserved_version(version: u32) -> bool {
613 version & RESERVED_VERSION_MASK == version
614}
615
616impl Config {
617 /// Creates a config object with the given version.
618 ///
619 /// ## Examples:
620 ///
621 /// ```
622 /// let config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
623 /// # Ok::<(), quiche::Error>(())
624 /// ```
625 pub fn new(version: u32) -> Result<Config> {
626 Self::with_tls_ctx(version, tls::Context::new()?)
627 }
628
629 /// Creates a config object with the given version and
630 /// [`SslContextBuilder`].
631 ///
632 /// This is useful for applications that wish to manually configure
633 /// [`SslContextBuilder`].
634 ///
635 /// [`SslContextBuilder`]: https://docs.rs/boring/latest/boring/ssl/struct.SslContextBuilder.html
636 #[cfg(feature = "boringssl-boring-crate")]
637 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
638 pub fn with_boring_ssl_ctx_builder(
639 version: u32, tls_ctx_builder: boring::ssl::SslContextBuilder,
640 ) -> Result<Config> {
641 Self::with_tls_ctx(version, tls::Context::from_boring(tls_ctx_builder))
642 }
643
644 fn with_tls_ctx(version: u32, tls_ctx: tls::Context) -> Result<Config> {
645 if !is_reserved_version(version) && !version_is_supported(version) {
646 return Err(Error::UnknownVersion);
647 }
648
649 Ok(Config {
650 local_transport_params: TransportParams::default(),
651 version,
652 tls_ctx,
653 application_protos: Vec::new(),
654 grease: true,
655 cc_algorithm: CongestionControlAlgorithm::CUBIC,
656 custom_bbr_params: None,
657 initial_congestion_window_packets:
658 DEFAULT_INITIAL_CONGESTION_WINDOW_PACKETS,
659 enable_relaxed_loss_threshold: false,
660 pmtud: false,
661 hystart: true,
662 pacing: true,
663 max_pacing_rate: None,
664
665 tx_cap_factor: TX_CAP_FACTOR,
666
667 dgram_recv_max_queue_len: DEFAULT_MAX_DGRAM_QUEUE_LEN,
668 dgram_send_max_queue_len: DEFAULT_MAX_DGRAM_QUEUE_LEN,
669
670 path_challenge_recv_max_queue_len:
671 DEFAULT_MAX_PATH_CHALLENGE_RX_QUEUE_LEN,
672
673 max_send_udp_payload_size: MAX_SEND_UDP_PAYLOAD_SIZE,
674
675 max_connection_window: MAX_CONNECTION_WINDOW,
676 max_stream_window: stream::MAX_STREAM_WINDOW,
677
678 max_amplification_factor: MAX_AMPLIFICATION_FACTOR,
679
680 disable_dcid_reuse: false,
681
682 track_unknown_transport_params: None,
683 initial_rtt: DEFAULT_INITIAL_RTT,
684 })
685 }
686
687 /// Configures the given certificate chain.
688 ///
689 /// The content of `file` is parsed as a PEM-encoded leaf certificate,
690 /// followed by optional intermediate certificates.
691 ///
692 /// ## Examples:
693 ///
694 /// ```no_run
695 /// # let mut config = quiche::Config::new(0xbabababa)?;
696 /// config.load_cert_chain_from_pem_file("/path/to/cert.pem")?;
697 /// # Ok::<(), quiche::Error>(())
698 /// ```
699 pub fn load_cert_chain_from_pem_file(&mut self, file: &str) -> Result<()> {
700 self.tls_ctx.use_certificate_chain_file(file)
701 }
702
703 /// Configures the given private key.
704 ///
705 /// The content of `file` is parsed as a PEM-encoded private key.
706 ///
707 /// ## Examples:
708 ///
709 /// ```no_run
710 /// # let mut config = quiche::Config::new(0xbabababa)?;
711 /// config.load_priv_key_from_pem_file("/path/to/key.pem")?;
712 /// # Ok::<(), quiche::Error>(())
713 /// ```
714 pub fn load_priv_key_from_pem_file(&mut self, file: &str) -> Result<()> {
715 self.tls_ctx.use_privkey_file(file)
716 }
717
718 /// Specifies a file where trusted CA certificates are stored for the
719 /// purposes of certificate verification.
720 ///
721 /// The content of `file` is parsed as a PEM-encoded certificate chain.
722 ///
723 /// ## Examples:
724 ///
725 /// ```no_run
726 /// # let mut config = quiche::Config::new(0xbabababa)?;
727 /// config.load_verify_locations_from_file("/path/to/cert.pem")?;
728 /// # Ok::<(), quiche::Error>(())
729 /// ```
730 pub fn load_verify_locations_from_file(&mut self, file: &str) -> Result<()> {
731 self.tls_ctx.load_verify_locations_from_file(file)
732 }
733
734 /// Specifies a directory where trusted CA certificates are stored for the
735 /// purposes of certificate verification.
736 ///
737 /// The content of `dir` a set of PEM-encoded certificate chains.
738 ///
739 /// ## Examples:
740 ///
741 /// ```no_run
742 /// # let mut config = quiche::Config::new(0xbabababa)?;
743 /// config.load_verify_locations_from_directory("/path/to/certs")?;
744 /// # Ok::<(), quiche::Error>(())
745 /// ```
746 pub fn load_verify_locations_from_directory(
747 &mut self, dir: &str,
748 ) -> Result<()> {
749 self.tls_ctx.load_verify_locations_from_directory(dir)
750 }
751
752 /// Configures whether to verify the peer's certificate.
753 ///
754 /// This should usually be `true` for client-side connections and `false`
755 /// for server-side ones.
756 ///
757 /// Note that by default, no verification is performed.
758 ///
759 /// Also note that on the server-side, enabling verification of the peer
760 /// will trigger a certificate request and make authentication errors
761 /// fatal, but will still allow anonymous clients (i.e. clients that
762 /// don't present a certificate at all). Servers can check whether a
763 /// client presented a certificate by calling [`peer_cert()`] if they
764 /// need to.
765 ///
766 /// [`peer_cert()`]: struct.Connection.html#method.peer_cert
767 pub fn verify_peer(&mut self, verify: bool) {
768 self.tls_ctx.set_verify(verify);
769 }
770
771 /// Configures whether to do path MTU discovery.
772 ///
773 /// The default value is `false`.
774 pub fn discover_pmtu(&mut self, discover: bool) {
775 self.pmtud = discover;
776 }
777
778 /// Configures whether to send GREASE values.
779 ///
780 /// The default value is `true`.
781 pub fn grease(&mut self, grease: bool) {
782 self.grease = grease;
783 }
784
785 /// Enables logging of secrets.
786 ///
787 /// When logging is enabled, the [`set_keylog()`] method must be called on
788 /// the connection for its cryptographic secrets to be logged in the
789 /// [keylog] format to the specified writer.
790 ///
791 /// [`set_keylog()`]: struct.Connection.html#method.set_keylog
792 /// [keylog]: https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format
793 pub fn log_keys(&mut self) {
794 self.tls_ctx.enable_keylog();
795 }
796
797 /// Configures the session ticket key material.
798 ///
799 /// On the server this key will be used to encrypt and decrypt session
800 /// tickets, used to perform session resumption without server-side state.
801 ///
802 /// By default a key is generated internally, and rotated regularly, so
803 /// applications don't need to call this unless they need to use a
804 /// specific key (e.g. in order to support resumption across multiple
805 /// servers), in which case the application is also responsible for
806 /// rotating the key to provide forward secrecy.
807 pub fn set_ticket_key(&mut self, key: &[u8]) -> Result<()> {
808 self.tls_ctx.set_ticket_key(key)
809 }
810
811 /// Enables sending or receiving early data.
812 pub fn enable_early_data(&mut self) {
813 self.tls_ctx.set_early_data_enabled(true);
814 }
815
816 /// Configures the list of supported application protocols.
817 ///
818 /// On the client this configures the list of protocols to send to the
819 /// server as part of the ALPN extension.
820 ///
821 /// On the server this configures the list of supported protocols to match
822 /// against the client-supplied list.
823 ///
824 /// Applications must set a value, but no default is provided.
825 ///
826 /// ## Examples:
827 ///
828 /// ```
829 /// # let mut config = quiche::Config::new(0xbabababa)?;
830 /// config.set_application_protos(&[b"http/1.1", b"http/0.9"]);
831 /// # Ok::<(), quiche::Error>(())
832 /// ```
833 pub fn set_application_protos(
834 &mut self, protos_list: &[&[u8]],
835 ) -> Result<()> {
836 self.application_protos =
837 protos_list.iter().map(|s| s.to_vec()).collect();
838
839 self.tls_ctx.set_alpn(protos_list)
840 }
841
842 /// Configures the list of supported application protocols using wire
843 /// format.
844 ///
845 /// The list of protocols `protos` must be a series of non-empty, 8-bit
846 /// length-prefixed strings.
847 ///
848 /// See [`set_application_protos`](Self::set_application_protos) for more
849 /// background about application protocols.
850 ///
851 /// ## Examples:
852 ///
853 /// ```
854 /// # let mut config = quiche::Config::new(0xbabababa)?;
855 /// config.set_application_protos_wire_format(b"\x08http/1.1\x08http/0.9")?;
856 /// # Ok::<(), quiche::Error>(())
857 /// ```
858 pub fn set_application_protos_wire_format(
859 &mut self, protos: &[u8],
860 ) -> Result<()> {
861 let mut b = octets::Octets::with_slice(protos);
862
863 let mut protos_list = Vec::new();
864
865 while let Ok(proto) = b.get_bytes_with_u8_length() {
866 protos_list.push(proto.buf());
867 }
868
869 self.set_application_protos(&protos_list)
870 }
871
872 /// Sets the anti-amplification limit factor.
873 ///
874 /// The default value is `3`.
875 pub fn set_max_amplification_factor(&mut self, v: usize) {
876 self.max_amplification_factor = v;
877 }
878
879 /// Sets the send capacity factor.
880 ///
881 /// The default value is `1`.
882 pub fn set_send_capacity_factor(&mut self, v: f64) {
883 self.tx_cap_factor = v;
884 }
885
886 /// Sets the connection's initial RTT.
887 ///
888 /// The default value is `333`.
889 pub fn set_initial_rtt(&mut self, v: Duration) {
890 self.initial_rtt = v;
891 }
892
893 /// Sets the `max_idle_timeout` transport parameter, in milliseconds.
894 ///
895 /// The default value is infinite, that is, no timeout is used.
896 pub fn set_max_idle_timeout(&mut self, v: u64) {
897 self.local_transport_params.max_idle_timeout =
898 cmp::min(v, octets::MAX_VAR_INT);
899 }
900
901 /// Sets the `max_udp_payload_size transport` parameter.
902 ///
903 /// The default value is `65527`.
904 pub fn set_max_recv_udp_payload_size(&mut self, v: usize) {
905 self.local_transport_params.max_udp_payload_size =
906 cmp::min(v as u64, octets::MAX_VAR_INT);
907 }
908
909 /// Sets the maximum outgoing UDP payload size.
910 ///
911 /// The default and minimum value is `1200`.
912 pub fn set_max_send_udp_payload_size(&mut self, v: usize) {
913 self.max_send_udp_payload_size = cmp::max(v, MAX_SEND_UDP_PAYLOAD_SIZE);
914 }
915
916 /// Sets the `initial_max_data` transport parameter.
917 ///
918 /// When set to a non-zero value quiche will only allow at most `v` bytes of
919 /// incoming stream data to be buffered for the whole connection (that is,
920 /// data that is not yet read by the application) and will allow more data
921 /// to be received as the buffer is consumed by the application.
922 ///
923 /// When set to zero, either explicitly or via the default, quiche will not
924 /// give any flow control to the peer, preventing it from sending any stream
925 /// data.
926 ///
927 /// The default value is `0`.
928 pub fn set_initial_max_data(&mut self, v: u64) {
929 self.local_transport_params.initial_max_data =
930 cmp::min(v, octets::MAX_VAR_INT);
931 }
932
933 /// Sets the `initial_max_stream_data_bidi_local` transport parameter.
934 ///
935 /// When set to a non-zero value quiche will only allow at most `v` bytes
936 /// of incoming stream data to be buffered for each locally-initiated
937 /// bidirectional stream (that is, data that is not yet read by the
938 /// application) and will allow more data to be received as the buffer is
939 /// consumed by the application.
940 ///
941 /// When set to zero, either explicitly or via the default, quiche will not
942 /// give any flow control to the peer, preventing it from sending any stream
943 /// data.
944 ///
945 /// The default value is `0`.
946 pub fn set_initial_max_stream_data_bidi_local(&mut self, v: u64) {
947 self.local_transport_params
948 .initial_max_stream_data_bidi_local =
949 cmp::min(v, octets::MAX_VAR_INT);
950 }
951
952 /// Sets the `initial_max_stream_data_bidi_remote` transport parameter.
953 ///
954 /// When set to a non-zero value quiche will only allow at most `v` bytes
955 /// of incoming stream data to be buffered for each remotely-initiated
956 /// bidirectional stream (that is, data that is not yet read by the
957 /// application) and will allow more data to be received as the buffer is
958 /// consumed by the application.
959 ///
960 /// When set to zero, either explicitly or via the default, quiche will not
961 /// give any flow control to the peer, preventing it from sending any stream
962 /// data.
963 ///
964 /// The default value is `0`.
965 pub fn set_initial_max_stream_data_bidi_remote(&mut self, v: u64) {
966 self.local_transport_params
967 .initial_max_stream_data_bidi_remote =
968 cmp::min(v, octets::MAX_VAR_INT);
969 }
970
971 /// Sets the `initial_max_stream_data_uni` transport parameter.
972 ///
973 /// When set to a non-zero value quiche will only allow at most `v` bytes
974 /// of incoming stream data to be buffered for each unidirectional stream
975 /// (that is, data that is not yet read by the application) and will allow
976 /// more data to be received as the buffer is consumed by the application.
977 ///
978 /// When set to zero, either explicitly or via the default, quiche will not
979 /// give any flow control to the peer, preventing it from sending any stream
980 /// data.
981 ///
982 /// The default value is `0`.
983 pub fn set_initial_max_stream_data_uni(&mut self, v: u64) {
984 self.local_transport_params.initial_max_stream_data_uni =
985 cmp::min(v, octets::MAX_VAR_INT);
986 }
987
988 /// Sets the `initial_max_streams_bidi` transport parameter.
989 ///
990 /// When set to a non-zero value quiche will only allow `v` number of
991 /// concurrent remotely-initiated bidirectional streams to be open at any
992 /// given time and will increase the limit automatically as streams are
993 /// completed.
994 ///
995 /// When set to zero, either explicitly or via the default, quiche will not
996 /// not allow the peer to open any bidirectional streams.
997 ///
998 /// A bidirectional stream is considered completed when all incoming data
999 /// has been read by the application (up to the `fin` offset) or the
1000 /// stream's read direction has been shutdown, and all outgoing data has
1001 /// been acked by the peer (up to the `fin` offset) or the stream's write
1002 /// direction has been shutdown.
1003 ///
1004 /// The default value is `0`.
1005 pub fn set_initial_max_streams_bidi(&mut self, v: u64) {
1006 self.local_transport_params.initial_max_streams_bidi =
1007 cmp::min(v, octets::MAX_VAR_INT);
1008 }
1009
1010 /// Sets the `initial_max_streams_uni` transport parameter.
1011 ///
1012 /// When set to a non-zero value quiche will only allow `v` number of
1013 /// concurrent remotely-initiated unidirectional streams to be open at any
1014 /// given time and will increase the limit automatically as streams are
1015 /// completed.
1016 ///
1017 /// When set to zero, either explicitly or via the default, quiche will not
1018 /// not allow the peer to open any unidirectional streams.
1019 ///
1020 /// A unidirectional stream is considered completed when all incoming data
1021 /// has been read by the application (up to the `fin` offset) or the
1022 /// stream's read direction has been shutdown.
1023 ///
1024 /// The default value is `0`.
1025 pub fn set_initial_max_streams_uni(&mut self, v: u64) {
1026 self.local_transport_params.initial_max_streams_uni =
1027 cmp::min(v, octets::MAX_VAR_INT);
1028 }
1029
1030 /// Sets the `ack_delay_exponent` transport parameter.
1031 ///
1032 /// The default value is `3`.
1033 pub fn set_ack_delay_exponent(&mut self, v: u64) {
1034 self.local_transport_params.ack_delay_exponent =
1035 cmp::min(v, octets::MAX_VAR_INT);
1036 }
1037
1038 /// Sets the `max_ack_delay` transport parameter.
1039 ///
1040 /// The default value is `25`.
1041 pub fn set_max_ack_delay(&mut self, v: u64) {
1042 self.local_transport_params.max_ack_delay =
1043 cmp::min(v, octets::MAX_VAR_INT);
1044 }
1045
1046 /// Sets the `active_connection_id_limit` transport parameter.
1047 ///
1048 /// The default value is `2`. Lower values will be ignored.
1049 pub fn set_active_connection_id_limit(&mut self, v: u64) {
1050 if v >= 2 {
1051 self.local_transport_params.active_conn_id_limit =
1052 cmp::min(v, octets::MAX_VAR_INT);
1053 }
1054 }
1055
1056 /// Sets the `disable_active_migration` transport parameter.
1057 ///
1058 /// The default value is `false`.
1059 pub fn set_disable_active_migration(&mut self, v: bool) {
1060 self.local_transport_params.disable_active_migration = v;
1061 }
1062
1063 /// Sets the congestion control algorithm used.
1064 ///
1065 /// The default value is `CongestionControlAlgorithm::CUBIC`.
1066 pub fn set_cc_algorithm(&mut self, algo: CongestionControlAlgorithm) {
1067 self.cc_algorithm = algo;
1068 }
1069
1070 /// Sets custom BBR settings.
1071 ///
1072 /// This API is experimental and will be removed in the future.
1073 ///
1074 /// Currently this only applies if cc_algorithm is
1075 /// `CongestionControlAlgorithm::Bbr2Gcongestion` is set.
1076 ///
1077 /// The default value is `None`.
1078 #[cfg(feature = "internal")]
1079 #[doc(hidden)]
1080 pub fn set_custom_bbr_params(&mut self, custom_bbr_settings: BbrParams) {
1081 self.custom_bbr_params = Some(custom_bbr_settings);
1082 }
1083
1084 /// Sets the congestion control algorithm used by string.
1085 ///
1086 /// The default value is `cubic`. On error `Error::CongestionControl`
1087 /// will be returned.
1088 ///
1089 /// ## Examples:
1090 ///
1091 /// ```
1092 /// # let mut config = quiche::Config::new(0xbabababa)?;
1093 /// config.set_cc_algorithm_name("reno");
1094 /// # Ok::<(), quiche::Error>(())
1095 /// ```
1096 pub fn set_cc_algorithm_name(&mut self, name: &str) -> Result<()> {
1097 self.cc_algorithm = CongestionControlAlgorithm::from_str(name)?;
1098
1099 Ok(())
1100 }
1101
1102 /// Sets initial congestion window size in terms of packet count.
1103 ///
1104 /// The default value is 10.
1105 pub fn set_initial_congestion_window_packets(&mut self, packets: usize) {
1106 self.initial_congestion_window_packets = packets;
1107 }
1108
1109 /// Configure whether to enable relaxed loss detection on spurious loss.
1110 ///
1111 /// The default value is false.
1112 pub fn set_enable_relaxed_loss_threshold(&mut self, enable: bool) {
1113 self.enable_relaxed_loss_threshold = enable;
1114 }
1115
1116 /// Configures whether to enable HyStart++.
1117 ///
1118 /// The default value is `true`.
1119 pub fn enable_hystart(&mut self, v: bool) {
1120 self.hystart = v;
1121 }
1122
1123 /// Configures whether to enable pacing.
1124 ///
1125 /// The default value is `true`.
1126 pub fn enable_pacing(&mut self, v: bool) {
1127 self.pacing = v;
1128 }
1129
1130 /// Sets the max value for pacing rate.
1131 ///
1132 /// By default pacing rate is not limited.
1133 pub fn set_max_pacing_rate(&mut self, v: u64) {
1134 self.max_pacing_rate = Some(v);
1135 }
1136
1137 /// Configures whether to enable receiving DATAGRAM frames.
1138 ///
1139 /// When enabled, the `max_datagram_frame_size` transport parameter is set
1140 /// to 65536 as recommended by draft-ietf-quic-datagram-01.
1141 ///
1142 /// The default is `false`.
1143 pub fn enable_dgram(
1144 &mut self, enabled: bool, recv_queue_len: usize, send_queue_len: usize,
1145 ) {
1146 self.local_transport_params.max_datagram_frame_size = if enabled {
1147 Some(MAX_DGRAM_FRAME_SIZE)
1148 } else {
1149 None
1150 };
1151 self.dgram_recv_max_queue_len = recv_queue_len;
1152 self.dgram_send_max_queue_len = send_queue_len;
1153 }
1154
1155 /// Configures the max number of queued received PATH_CHALLENGE frames.
1156 ///
1157 /// When an endpoint receives a PATH_CHALLENGE frame and the queue is full,
1158 /// the frame is discarded.
1159 ///
1160 /// The default is 3.
1161 pub fn set_path_challenge_recv_max_queue_len(&mut self, queue_len: usize) {
1162 self.path_challenge_recv_max_queue_len = queue_len;
1163 }
1164
1165 /// Sets the maximum size of the connection window.
1166 ///
1167 /// The default value is MAX_CONNECTION_WINDOW (24MBytes).
1168 pub fn set_max_connection_window(&mut self, v: u64) {
1169 self.max_connection_window = v;
1170 }
1171
1172 /// Sets the maximum size of the stream window.
1173 ///
1174 /// The default value is MAX_STREAM_WINDOW (16MBytes).
1175 pub fn set_max_stream_window(&mut self, v: u64) {
1176 self.max_stream_window = v;
1177 }
1178
1179 /// Sets the initial stateless reset token.
1180 ///
1181 /// This value is only advertised by servers. Setting a stateless retry
1182 /// token as a client has no effect on the connection.
1183 ///
1184 /// The default value is `None`.
1185 pub fn set_stateless_reset_token(&mut self, v: Option<u128>) {
1186 self.local_transport_params.stateless_reset_token = v;
1187 }
1188
1189 /// Sets whether the QUIC connection should avoid reusing DCIDs over
1190 /// different paths.
1191 ///
1192 /// When set to `true`, it ensures that a destination Connection ID is never
1193 /// reused on different paths. Such behaviour may lead to connection stall
1194 /// if the peer performs a non-voluntary migration (e.g., NAT rebinding) and
1195 /// does not provide additional destination Connection IDs to handle such
1196 /// event.
1197 ///
1198 /// The default value is `false`.
1199 pub fn set_disable_dcid_reuse(&mut self, v: bool) {
1200 self.disable_dcid_reuse = v;
1201 }
1202
1203 /// Enables tracking unknown transport parameters.
1204 ///
1205 /// Specify the maximum number of bytes used to track unknown transport
1206 /// parameters. The size includes the identifier and its value. If storing a
1207 /// transport parameter would cause the limit to be exceeded, it is quietly
1208 /// dropped.
1209 ///
1210 /// The default is that the feature is disabled.
1211 pub fn enable_track_unknown_transport_parameters(&mut self, size: usize) {
1212 self.track_unknown_transport_params = Some(size);
1213 }
1214}
1215
1216/// Tracks the health of the tx_buffered value.
1217#[derive(Clone, Copy, Debug, Default, PartialEq)]
1218pub enum TxBufferTrackingState {
1219 /// The send buffer is in a good state
1220 #[default]
1221 Ok,
1222 /// The send buffer is in an inconsistent state, which could lead to
1223 /// connection stalls or excess buffering due to bugs we haven't
1224 /// tracked down yet.
1225 Inconsistent,
1226}
1227
1228/// A QUIC connection.
1229pub struct Connection<F = DefaultBufFactory>
1230where
1231 F: BufFactory,
1232{
1233 /// QUIC wire version used for the connection.
1234 version: u32,
1235
1236 /// Connection Identifiers.
1237 ids: cid::ConnectionIdentifiers,
1238
1239 /// Unique opaque ID for the connection that can be used for logging.
1240 trace_id: String,
1241
1242 /// Packet number spaces.
1243 pkt_num_spaces: [packet::PktNumSpace; packet::Epoch::count()],
1244
1245 /// The crypto context.
1246 crypto_ctx: [packet::CryptoContext; packet::Epoch::count()],
1247
1248 /// Next packet number.
1249 next_pkt_num: u64,
1250
1251 // TODO
1252 // combine with `next_pkt_num`
1253 /// Track the packet skip context
1254 pkt_num_manager: packet::PktNumManager,
1255
1256 /// Peer's transport parameters.
1257 peer_transport_params: TransportParams,
1258
1259 /// If tracking unknown transport parameters from a peer, how much space to
1260 /// use in bytes.
1261 peer_transport_params_track_unknown: Option<usize>,
1262
1263 /// Local transport parameters.
1264 local_transport_params: TransportParams,
1265
1266 /// TLS handshake state.
1267 handshake: tls::Handshake,
1268
1269 /// Serialized TLS session buffer.
1270 ///
1271 /// This field is populated when a new session ticket is processed on the
1272 /// client. On the server this is empty.
1273 session: Option<Vec<u8>>,
1274
1275 /// The configuration for recovery.
1276 recovery_config: recovery::RecoveryConfig,
1277
1278 /// The path manager.
1279 paths: path::PathMap,
1280
1281 /// PATH_CHALLENGE receive queue max length.
1282 path_challenge_recv_max_queue_len: usize,
1283
1284 /// Total number of received PATH_CHALLENGE frames.
1285 path_challenge_rx_count: u64,
1286
1287 /// List of supported application protocols.
1288 application_protos: Vec<Vec<u8>>,
1289
1290 /// Total number of received packets.
1291 recv_count: usize,
1292
1293 /// Total number of sent packets.
1294 sent_count: usize,
1295
1296 /// Total number of lost packets.
1297 lost_count: usize,
1298
1299 /// Total number of lost packets that were later acked.
1300 spurious_lost_count: usize,
1301
1302 /// Total number of packets sent with data retransmitted.
1303 retrans_count: usize,
1304
1305 /// Total number of sent DATAGRAM frames.
1306 dgram_sent_count: usize,
1307
1308 /// Total number of received DATAGRAM frames.
1309 dgram_recv_count: usize,
1310
1311 /// Total number of bytes received from the peer.
1312 rx_data: u64,
1313
1314 /// Receiver flow controller.
1315 flow_control: flowcontrol::FlowControl,
1316
1317 /// Whether we send MAX_DATA frame.
1318 almost_full: bool,
1319
1320 /// Number of stream data bytes that can be buffered.
1321 tx_cap: usize,
1322
1323 /// The send capacity factor.
1324 tx_cap_factor: f64,
1325
1326 /// Number of bytes buffered in the send buffer.
1327 tx_buffered: usize,
1328
1329 /// Tracks the health of tx_buffered.
1330 tx_buffered_state: TxBufferTrackingState,
1331
1332 /// Total number of bytes sent to the peer.
1333 tx_data: u64,
1334
1335 /// Peer's flow control limit for the connection.
1336 max_tx_data: u64,
1337
1338 /// Last tx_data before running a full send() loop.
1339 last_tx_data: u64,
1340
1341 /// Total number of bytes retransmitted over the connection.
1342 /// This counts only STREAM and CRYPTO data.
1343 stream_retrans_bytes: u64,
1344
1345 /// Total number of bytes sent over the connection.
1346 sent_bytes: u64,
1347
1348 /// Total number of bytes received over the connection.
1349 recv_bytes: u64,
1350
1351 /// Total number of bytes sent acked over the connection.
1352 acked_bytes: u64,
1353
1354 /// Total number of bytes sent lost over the connection.
1355 lost_bytes: u64,
1356
1357 /// Streams map, indexed by stream ID.
1358 streams: stream::StreamMap<F>,
1359
1360 /// Peer's original destination connection ID. Used by the client to
1361 /// validate the server's transport parameter.
1362 odcid: Option<ConnectionId<'static>>,
1363
1364 /// Peer's retry source connection ID. Used by the client during stateless
1365 /// retry to validate the server's transport parameter.
1366 rscid: Option<ConnectionId<'static>>,
1367
1368 /// Received address verification token.
1369 token: Option<Vec<u8>>,
1370
1371 /// Error code and reason to be sent to the peer in a CONNECTION_CLOSE
1372 /// frame.
1373 local_error: Option<ConnectionError>,
1374
1375 /// Error code and reason received from the peer in a CONNECTION_CLOSE
1376 /// frame.
1377 peer_error: Option<ConnectionError>,
1378
1379 /// The connection-level limit at which send blocking occurred.
1380 blocked_limit: Option<u64>,
1381
1382 /// Idle timeout expiration time.
1383 idle_timer: Option<Instant>,
1384
1385 /// Draining timeout expiration time.
1386 draining_timer: Option<Instant>,
1387
1388 /// List of raw packets that were received before they could be decrypted.
1389 undecryptable_pkts: VecDeque<(Vec<u8>, RecvInfo)>,
1390
1391 /// The negotiated ALPN protocol.
1392 alpn: Vec<u8>,
1393
1394 /// Whether this is a server-side connection.
1395 is_server: bool,
1396
1397 /// Whether the initial secrets have been derived.
1398 derived_initial_secrets: bool,
1399
1400 /// Whether a version negotiation packet has already been received. Only
1401 /// relevant for client connections.
1402 did_version_negotiation: bool,
1403
1404 /// Whether stateless retry has been performed.
1405 did_retry: bool,
1406
1407 /// Whether the peer already updated its connection ID.
1408 got_peer_conn_id: bool,
1409
1410 /// Whether the peer verified our initial address.
1411 peer_verified_initial_address: bool,
1412
1413 /// Whether the peer's transport parameters were parsed.
1414 parsed_peer_transport_params: bool,
1415
1416 /// Whether the connection handshake has been completed.
1417 handshake_completed: bool,
1418
1419 /// Whether the HANDSHAKE_DONE frame has been sent.
1420 handshake_done_sent: bool,
1421
1422 /// Whether the HANDSHAKE_DONE frame has been acked.
1423 handshake_done_acked: bool,
1424
1425 /// Whether the connection handshake has been confirmed.
1426 handshake_confirmed: bool,
1427
1428 /// Key phase bit used for outgoing protected packets.
1429 key_phase: bool,
1430
1431 /// Whether an ack-eliciting packet has been sent since last receiving a
1432 /// packet.
1433 ack_eliciting_sent: bool,
1434
1435 /// Whether the connection is closed.
1436 closed: bool,
1437
1438 /// Whether the connection was timed out.
1439 timed_out: bool,
1440
1441 /// Whether to send GREASE.
1442 grease: bool,
1443
1444 /// TLS keylog writer.
1445 keylog: Option<Box<dyn std::io::Write + Send + Sync>>,
1446
1447 #[cfg(feature = "qlog")]
1448 qlog: QlogInfo,
1449
1450 /// DATAGRAM queues.
1451 dgram_recv_queue: dgram::DatagramQueue,
1452 dgram_send_queue: dgram::DatagramQueue,
1453
1454 /// Whether to emit DATAGRAM frames in the next packet.
1455 emit_dgram: bool,
1456
1457 /// Whether the connection should prevent from reusing destination
1458 /// Connection IDs when the peer migrates.
1459 disable_dcid_reuse: bool,
1460
1461 /// The number of streams reset by local.
1462 reset_stream_local_count: u64,
1463
1464 /// The number of streams stopped by local.
1465 stopped_stream_local_count: u64,
1466
1467 /// The number of streams reset by remote.
1468 reset_stream_remote_count: u64,
1469
1470 /// The number of streams stopped by remote.
1471 stopped_stream_remote_count: u64,
1472
1473 /// The number of DATA_BLOCKED frames sent due to hitting the connection
1474 /// flow control limit.
1475 data_blocked_sent_count: u64,
1476
1477 /// The number of STREAM_DATA_BLOCKED frames sent due to a stream hitting
1478 /// the stream flow control limit.
1479 stream_data_blocked_sent_count: u64,
1480
1481 /// The number of DATA_BLOCKED frames received from the remote endpoint.
1482 data_blocked_recv_count: u64,
1483
1484 /// The number of STREAM_DATA_BLOCKED frames received from the remote
1485 /// endpoint.
1486 stream_data_blocked_recv_count: u64,
1487
1488 /// The anti-amplification limit factor.
1489 max_amplification_factor: usize,
1490}
1491
1492/// Creates a new server-side connection.
1493///
1494/// The `scid` parameter represents the server's source connection ID, while
1495/// the optional `odcid` parameter represents the original destination ID the
1496/// client sent before a stateless retry (this is only required when using
1497/// the [`retry()`] function).
1498///
1499/// [`retry()`]: fn.retry.html
1500///
1501/// ## Examples:
1502///
1503/// ```no_run
1504/// # let mut config = quiche::Config::new(0xbabababa)?;
1505/// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
1506/// # let local = "127.0.0.1:0".parse().unwrap();
1507/// # let peer = "127.0.0.1:1234".parse().unwrap();
1508/// let conn = quiche::accept(&scid, None, local, peer, &mut config)?;
1509/// # Ok::<(), quiche::Error>(())
1510/// ```
1511#[inline]
1512pub fn accept(
1513 scid: &ConnectionId, odcid: Option<&ConnectionId>, local: SocketAddr,
1514 peer: SocketAddr, config: &mut Config,
1515) -> Result<Connection> {
1516 let conn = Connection::new(scid, odcid, local, peer, config, true)?;
1517
1518 Ok(conn)
1519}
1520
1521/// Creates a new server-side connection, with a custom buffer generation
1522/// method.
1523///
1524/// The buffers generated can be anything that can be drereferenced as a byte
1525/// slice. See [`accept`] and [`BufFactory`] for more info.
1526#[inline]
1527pub fn accept_with_buf_factory<F: BufFactory>(
1528 scid: &ConnectionId, odcid: Option<&ConnectionId>, local: SocketAddr,
1529 peer: SocketAddr, config: &mut Config,
1530) -> Result<Connection<F>> {
1531 let conn = Connection::new(scid, odcid, local, peer, config, true)?;
1532
1533 Ok(conn)
1534}
1535
1536/// Creates a new client-side connection.
1537///
1538/// The `scid` parameter is used as the connection's source connection ID,
1539/// while the optional `server_name` parameter is used to verify the peer's
1540/// certificate.
1541///
1542/// ## Examples:
1543///
1544/// ```no_run
1545/// # let mut config = quiche::Config::new(0xbabababa)?;
1546/// # let server_name = "quic.tech";
1547/// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
1548/// # let local = "127.0.0.1:4321".parse().unwrap();
1549/// # let peer = "127.0.0.1:1234".parse().unwrap();
1550/// let conn =
1551/// quiche::connect(Some(&server_name), &scid, local, peer, &mut config)?;
1552/// # Ok::<(), quiche::Error>(())
1553/// ```
1554#[inline]
1555pub fn connect(
1556 server_name: Option<&str>, scid: &ConnectionId, local: SocketAddr,
1557 peer: SocketAddr, config: &mut Config,
1558) -> Result<Connection> {
1559 let mut conn = Connection::new(scid, None, local, peer, config, false)?;
1560
1561 if let Some(server_name) = server_name {
1562 conn.handshake.set_host_name(server_name)?;
1563 }
1564
1565 Ok(conn)
1566}
1567
1568/// Creates a new client-side connection, with a custom buffer generation
1569/// method.
1570///
1571/// The buffers generated can be anything that can be drereferenced as a byte
1572/// slice. See [`connect`] and [`BufFactory`] for more info.
1573#[inline]
1574pub fn connect_with_buffer_factory<F: BufFactory>(
1575 server_name: Option<&str>, scid: &ConnectionId, local: SocketAddr,
1576 peer: SocketAddr, config: &mut Config,
1577) -> Result<Connection<F>> {
1578 let mut conn = Connection::new(scid, None, local, peer, config, false)?;
1579
1580 if let Some(server_name) = server_name {
1581 conn.handshake.set_host_name(server_name)?;
1582 }
1583
1584 Ok(conn)
1585}
1586
1587/// Writes a version negotiation packet.
1588///
1589/// The `scid` and `dcid` parameters are the source connection ID and the
1590/// destination connection ID extracted from the received client's Initial
1591/// packet that advertises an unsupported version.
1592///
1593/// ## Examples:
1594///
1595/// ```no_run
1596/// # let mut buf = [0; 512];
1597/// # let mut out = [0; 512];
1598/// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
1599/// let (len, src) = socket.recv_from(&mut buf).unwrap();
1600///
1601/// let hdr =
1602/// quiche::Header::from_slice(&mut buf[..len], quiche::MAX_CONN_ID_LEN)?;
1603///
1604/// if hdr.version != quiche::PROTOCOL_VERSION {
1605/// let len = quiche::negotiate_version(&hdr.scid, &hdr.dcid, &mut out)?;
1606/// socket.send_to(&out[..len], &src).unwrap();
1607/// }
1608/// # Ok::<(), quiche::Error>(())
1609/// ```
1610#[inline]
1611pub fn negotiate_version(
1612 scid: &ConnectionId, dcid: &ConnectionId, out: &mut [u8],
1613) -> Result<usize> {
1614 packet::negotiate_version(scid, dcid, out)
1615}
1616
1617/// Writes a stateless retry packet.
1618///
1619/// The `scid` and `dcid` parameters are the source connection ID and the
1620/// destination connection ID extracted from the received client's Initial
1621/// packet, while `new_scid` is the server's new source connection ID and
1622/// `token` is the address validation token the client needs to echo back.
1623///
1624/// The application is responsible for generating the address validation
1625/// token to be sent to the client, and verifying tokens sent back by the
1626/// client. The generated token should include the `dcid` parameter, such
1627/// that it can be later extracted from the token and passed to the
1628/// [`accept()`] function as its `odcid` parameter.
1629///
1630/// [`accept()`]: fn.accept.html
1631///
1632/// ## Examples:
1633///
1634/// ```no_run
1635/// # let mut config = quiche::Config::new(0xbabababa)?;
1636/// # let mut buf = [0; 512];
1637/// # let mut out = [0; 512];
1638/// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
1639/// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
1640/// # let local = socket.local_addr().unwrap();
1641/// # fn mint_token(hdr: &quiche::Header, src: &std::net::SocketAddr) -> Vec<u8> {
1642/// # vec![]
1643/// # }
1644/// # fn validate_token<'a>(src: &std::net::SocketAddr, token: &'a [u8]) -> Option<quiche::ConnectionId<'a>> {
1645/// # None
1646/// # }
1647/// let (len, peer) = socket.recv_from(&mut buf).unwrap();
1648///
1649/// let hdr = quiche::Header::from_slice(&mut buf[..len], quiche::MAX_CONN_ID_LEN)?;
1650///
1651/// let token = hdr.token.as_ref().unwrap();
1652///
1653/// // No token sent by client, create a new one.
1654/// if token.is_empty() {
1655/// let new_token = mint_token(&hdr, &peer);
1656///
1657/// let len = quiche::retry(
1658/// &hdr.scid, &hdr.dcid, &scid, &new_token, hdr.version, &mut out,
1659/// )?;
1660///
1661/// socket.send_to(&out[..len], &peer).unwrap();
1662/// return Ok(());
1663/// }
1664///
1665/// // Client sent token, validate it.
1666/// let odcid = validate_token(&peer, token);
1667///
1668/// if odcid.is_none() {
1669/// // Invalid address validation token.
1670/// return Ok(());
1671/// }
1672///
1673/// let conn = quiche::accept(&scid, odcid.as_ref(), local, peer, &mut config)?;
1674/// # Ok::<(), quiche::Error>(())
1675/// ```
1676#[inline]
1677pub fn retry(
1678 scid: &ConnectionId, dcid: &ConnectionId, new_scid: &ConnectionId,
1679 token: &[u8], version: u32, out: &mut [u8],
1680) -> Result<usize> {
1681 packet::retry(scid, dcid, new_scid, token, version, out)
1682}
1683
1684/// Returns true if the given protocol version is supported.
1685#[inline]
1686pub fn version_is_supported(version: u32) -> bool {
1687 matches!(version, PROTOCOL_VERSION_V1)
1688}
1689
1690/// Pushes a frame to the output packet if there is enough space.
1691///
1692/// Returns `true` on success, `false` otherwise. In case of failure it means
1693/// there is no room to add the frame in the packet. You may retry to add the
1694/// frame later.
1695macro_rules! push_frame_to_pkt {
1696 ($out:expr, $frames:expr, $frame:expr, $left:expr) => {{
1697 if $frame.wire_len() <= $left {
1698 $left -= $frame.wire_len();
1699
1700 $frame.to_bytes(&mut $out)?;
1701
1702 $frames.push($frame);
1703
1704 true
1705 } else {
1706 false
1707 }
1708 }};
1709}
1710
1711/// Executes the provided body if the qlog feature is enabled, quiche has been
1712/// configured with a log writer, the event's importance is within the
1713/// configured level.
1714macro_rules! qlog_with_type {
1715 ($ty:expr, $qlog:expr, $qlog_streamer_ref:ident, $body:block) => {{
1716 #[cfg(feature = "qlog")]
1717 {
1718 if EventImportance::from($ty).is_contained_in(&$qlog.level) {
1719 if let Some($qlog_streamer_ref) = &mut $qlog.streamer {
1720 $body
1721 }
1722 }
1723 }
1724 }};
1725}
1726
1727#[cfg(feature = "qlog")]
1728const QLOG_PARAMS_SET: EventType =
1729 EventType::TransportEventType(TransportEventType::ParametersSet);
1730
1731#[cfg(feature = "qlog")]
1732const QLOG_PACKET_RX: EventType =
1733 EventType::TransportEventType(TransportEventType::PacketReceived);
1734
1735#[cfg(feature = "qlog")]
1736const QLOG_PACKET_TX: EventType =
1737 EventType::TransportEventType(TransportEventType::PacketSent);
1738
1739#[cfg(feature = "qlog")]
1740const QLOG_DATA_MV: EventType =
1741 EventType::TransportEventType(TransportEventType::DataMoved);
1742
1743#[cfg(feature = "qlog")]
1744const QLOG_METRICS: EventType =
1745 EventType::RecoveryEventType(RecoveryEventType::MetricsUpdated);
1746
1747#[cfg(feature = "qlog")]
1748const QLOG_CONNECTION_CLOSED: EventType =
1749 EventType::ConnectivityEventType(ConnectivityEventType::ConnectionClosed);
1750
1751#[cfg(feature = "qlog")]
1752struct QlogInfo {
1753 streamer: Option<qlog::streamer::QlogStreamer>,
1754 logged_peer_params: bool,
1755 level: EventImportance,
1756}
1757
1758#[cfg(feature = "qlog")]
1759impl Default for QlogInfo {
1760 fn default() -> Self {
1761 QlogInfo {
1762 streamer: None,
1763 logged_peer_params: false,
1764 level: EventImportance::Base,
1765 }
1766 }
1767}
1768
1769impl<F: BufFactory> Connection<F> {
1770 fn new(
1771 scid: &ConnectionId, odcid: Option<&ConnectionId>, local: SocketAddr,
1772 peer: SocketAddr, config: &mut Config, is_server: bool,
1773 ) -> Result<Connection<F>> {
1774 let tls = config.tls_ctx.new_handshake()?;
1775 Connection::with_tls(scid, odcid, local, peer, config, tls, is_server)
1776 }
1777
1778 fn with_tls(
1779 scid: &ConnectionId, odcid: Option<&ConnectionId>, local: SocketAddr,
1780 peer: SocketAddr, config: &Config, tls: tls::Handshake, is_server: bool,
1781 ) -> Result<Connection<F>> {
1782 let max_rx_data = config.local_transport_params.initial_max_data;
1783
1784 let scid_as_hex: Vec<String> =
1785 scid.iter().map(|b| format!("{b:02x}")).collect();
1786
1787 let reset_token = if is_server {
1788 config.local_transport_params.stateless_reset_token
1789 } else {
1790 None
1791 };
1792
1793 let recovery_config = recovery::RecoveryConfig::from_config(config);
1794
1795 let mut path = path::Path::new(
1796 local,
1797 peer,
1798 &recovery_config,
1799 config.path_challenge_recv_max_queue_len,
1800 true,
1801 Some(config),
1802 );
1803
1804 // If we did stateless retry assume the peer's address is verified.
1805 path.verified_peer_address = odcid.is_some();
1806 // Assume clients validate the server's address implicitly.
1807 path.peer_verified_local_address = is_server;
1808
1809 // Do not allocate more than the number of active CIDs.
1810 let paths = path::PathMap::new(
1811 path,
1812 config.local_transport_params.active_conn_id_limit as usize,
1813 is_server,
1814 );
1815
1816 let active_path_id = paths.get_active_path_id()?;
1817
1818 let ids = cid::ConnectionIdentifiers::new(
1819 config.local_transport_params.active_conn_id_limit as usize,
1820 scid,
1821 active_path_id,
1822 reset_token,
1823 );
1824
1825 let mut conn = Connection {
1826 version: config.version,
1827
1828 ids,
1829
1830 trace_id: scid_as_hex.join(""),
1831
1832 pkt_num_spaces: [
1833 packet::PktNumSpace::new(),
1834 packet::PktNumSpace::new(),
1835 packet::PktNumSpace::new(),
1836 ],
1837
1838 crypto_ctx: [
1839 packet::CryptoContext::new(),
1840 packet::CryptoContext::new(),
1841 packet::CryptoContext::new(),
1842 ],
1843
1844 next_pkt_num: 0,
1845
1846 pkt_num_manager: packet::PktNumManager::new(),
1847
1848 peer_transport_params: TransportParams::default(),
1849
1850 peer_transport_params_track_unknown: config
1851 .track_unknown_transport_params,
1852
1853 local_transport_params: config.local_transport_params.clone(),
1854
1855 handshake: tls,
1856
1857 session: None,
1858
1859 recovery_config,
1860
1861 paths,
1862 path_challenge_recv_max_queue_len: config
1863 .path_challenge_recv_max_queue_len,
1864 path_challenge_rx_count: 0,
1865
1866 application_protos: config.application_protos.clone(),
1867
1868 recv_count: 0,
1869 sent_count: 0,
1870 lost_count: 0,
1871 spurious_lost_count: 0,
1872 retrans_count: 0,
1873 dgram_sent_count: 0,
1874 dgram_recv_count: 0,
1875 sent_bytes: 0,
1876 recv_bytes: 0,
1877 acked_bytes: 0,
1878 lost_bytes: 0,
1879
1880 rx_data: 0,
1881 flow_control: flowcontrol::FlowControl::new(
1882 max_rx_data,
1883 cmp::min(max_rx_data / 2 * 3, DEFAULT_CONNECTION_WINDOW),
1884 config.max_connection_window,
1885 ),
1886 almost_full: false,
1887
1888 tx_cap: 0,
1889 tx_cap_factor: config.tx_cap_factor,
1890
1891 tx_buffered: 0,
1892 tx_buffered_state: TxBufferTrackingState::Ok,
1893
1894 tx_data: 0,
1895 max_tx_data: 0,
1896 last_tx_data: 0,
1897
1898 stream_retrans_bytes: 0,
1899
1900 streams: stream::StreamMap::new(
1901 config.local_transport_params.initial_max_streams_bidi,
1902 config.local_transport_params.initial_max_streams_uni,
1903 config.max_stream_window,
1904 ),
1905
1906 odcid: None,
1907
1908 rscid: None,
1909
1910 token: None,
1911
1912 local_error: None,
1913
1914 peer_error: None,
1915
1916 blocked_limit: None,
1917
1918 idle_timer: None,
1919
1920 draining_timer: None,
1921
1922 undecryptable_pkts: VecDeque::new(),
1923
1924 alpn: Vec::new(),
1925
1926 is_server,
1927
1928 derived_initial_secrets: false,
1929
1930 did_version_negotiation: false,
1931
1932 did_retry: false,
1933
1934 got_peer_conn_id: false,
1935
1936 // Assume clients validate the server's address implicitly.
1937 peer_verified_initial_address: is_server,
1938
1939 parsed_peer_transport_params: false,
1940
1941 handshake_completed: false,
1942
1943 handshake_done_sent: false,
1944 handshake_done_acked: false,
1945
1946 handshake_confirmed: false,
1947
1948 key_phase: false,
1949
1950 ack_eliciting_sent: false,
1951
1952 closed: false,
1953
1954 timed_out: false,
1955
1956 grease: config.grease,
1957
1958 keylog: None,
1959
1960 #[cfg(feature = "qlog")]
1961 qlog: Default::default(),
1962
1963 dgram_recv_queue: dgram::DatagramQueue::new(
1964 config.dgram_recv_max_queue_len,
1965 ),
1966
1967 dgram_send_queue: dgram::DatagramQueue::new(
1968 config.dgram_send_max_queue_len,
1969 ),
1970
1971 emit_dgram: true,
1972
1973 disable_dcid_reuse: config.disable_dcid_reuse,
1974
1975 reset_stream_local_count: 0,
1976 stopped_stream_local_count: 0,
1977 reset_stream_remote_count: 0,
1978 stopped_stream_remote_count: 0,
1979
1980 data_blocked_sent_count: 0,
1981 stream_data_blocked_sent_count: 0,
1982 data_blocked_recv_count: 0,
1983 stream_data_blocked_recv_count: 0,
1984
1985 max_amplification_factor: config.max_amplification_factor,
1986 };
1987
1988 if let Some(odcid) = odcid {
1989 conn.local_transport_params
1990 .original_destination_connection_id = Some(odcid.to_vec().into());
1991
1992 conn.local_transport_params.retry_source_connection_id =
1993 Some(conn.ids.get_scid(0)?.cid.to_vec().into());
1994
1995 conn.did_retry = true;
1996 }
1997
1998 conn.local_transport_params.initial_source_connection_id =
1999 Some(conn.ids.get_scid(0)?.cid.to_vec().into());
2000
2001 conn.handshake.init(is_server)?;
2002
2003 conn.handshake
2004 .use_legacy_codepoint(config.version != PROTOCOL_VERSION_V1);
2005
2006 conn.encode_transport_params()?;
2007
2008 // Derive initial secrets for the client. We can do this here because
2009 // we already generated the random destination connection ID.
2010 if !is_server {
2011 let mut dcid = [0; 16];
2012 rand::rand_bytes(&mut dcid[..]);
2013
2014 let (aead_open, aead_seal) = crypto::derive_initial_key_material(
2015 &dcid,
2016 conn.version,
2017 conn.is_server,
2018 false,
2019 )?;
2020
2021 let reset_token = conn.peer_transport_params.stateless_reset_token;
2022 conn.set_initial_dcid(
2023 dcid.to_vec().into(),
2024 reset_token,
2025 active_path_id,
2026 )?;
2027
2028 conn.crypto_ctx[packet::Epoch::Initial].crypto_open = Some(aead_open);
2029 conn.crypto_ctx[packet::Epoch::Initial].crypto_seal = Some(aead_seal);
2030
2031 conn.derived_initial_secrets = true;
2032 }
2033
2034 Ok(conn)
2035 }
2036
2037 /// Sets keylog output to the designated [`Writer`].
2038 ///
2039 /// This needs to be called as soon as the connection is created, to avoid
2040 /// missing some early logs.
2041 ///
2042 /// [`Writer`]: https://doc.rust-lang.org/std/io/trait.Write.html
2043 #[inline]
2044 pub fn set_keylog(&mut self, writer: Box<dyn std::io::Write + Send + Sync>) {
2045 self.keylog = Some(writer);
2046 }
2047
2048 /// Sets qlog output to the designated [`Writer`].
2049 ///
2050 /// Only events included in `QlogLevel::Base` are written. The serialization
2051 /// format is JSON-SEQ.
2052 ///
2053 /// This needs to be called as soon as the connection is created, to avoid
2054 /// missing some early logs.
2055 ///
2056 /// [`Writer`]: https://doc.rust-lang.org/std/io/trait.Write.html
2057 #[cfg(feature = "qlog")]
2058 #[cfg_attr(docsrs, doc(cfg(feature = "qlog")))]
2059 pub fn set_qlog(
2060 &mut self, writer: Box<dyn std::io::Write + Send + Sync>, title: String,
2061 description: String,
2062 ) {
2063 self.set_qlog_with_level(writer, title, description, QlogLevel::Base)
2064 }
2065
2066 /// Sets qlog output to the designated [`Writer`].
2067 ///
2068 /// Only qlog events included in the specified `QlogLevel` are written. The
2069 /// serialization format is JSON-SEQ.
2070 ///
2071 /// This needs to be called as soon as the connection is created, to avoid
2072 /// missing some early logs.
2073 ///
2074 /// [`Writer`]: https://doc.rust-lang.org/std/io/trait.Write.html
2075 #[cfg(feature = "qlog")]
2076 #[cfg_attr(docsrs, doc(cfg(feature = "qlog")))]
2077 pub fn set_qlog_with_level(
2078 &mut self, writer: Box<dyn std::io::Write + Send + Sync>, title: String,
2079 description: String, qlog_level: QlogLevel,
2080 ) {
2081 let vp = if self.is_server {
2082 qlog::VantagePointType::Server
2083 } else {
2084 qlog::VantagePointType::Client
2085 };
2086
2087 let level = match qlog_level {
2088 QlogLevel::Core => EventImportance::Core,
2089
2090 QlogLevel::Base => EventImportance::Base,
2091
2092 QlogLevel::Extra => EventImportance::Extra,
2093 };
2094
2095 self.qlog.level = level;
2096
2097 let trace = qlog::TraceSeq::new(
2098 qlog::VantagePoint {
2099 name: None,
2100 ty: vp,
2101 flow: None,
2102 },
2103 Some(title.to_string()),
2104 Some(description.to_string()),
2105 Some(qlog::Configuration {
2106 time_offset: Some(0.0),
2107 original_uris: None,
2108 }),
2109 None,
2110 );
2111
2112 let mut streamer = qlog::streamer::QlogStreamer::new(
2113 qlog::QLOG_VERSION.to_string(),
2114 Some(title),
2115 Some(description),
2116 None,
2117 Instant::now(),
2118 trace,
2119 self.qlog.level,
2120 writer,
2121 );
2122
2123 streamer.start_log().ok();
2124
2125 let ev_data = self
2126 .local_transport_params
2127 .to_qlog(TransportOwner::Local, self.handshake.cipher());
2128
2129 // This event occurs very early, so just mark the relative time as 0.0.
2130 streamer.add_event(Event::with_time(0.0, ev_data)).ok();
2131
2132 self.qlog.streamer = Some(streamer);
2133 }
2134
2135 /// Returns a mutable reference to the QlogStreamer, if it exists.
2136 #[cfg(feature = "qlog")]
2137 #[cfg_attr(docsrs, doc(cfg(feature = "qlog")))]
2138 pub fn qlog_streamer(&mut self) -> Option<&mut qlog::streamer::QlogStreamer> {
2139 self.qlog.streamer.as_mut()
2140 }
2141
2142 /// Configures the given session for resumption.
2143 ///
2144 /// On the client, this can be used to offer the given serialized session,
2145 /// as returned by [`session()`], for resumption.
2146 ///
2147 /// This must only be called immediately after creating a connection, that
2148 /// is, before any packet is sent or received.
2149 ///
2150 /// [`session()`]: struct.Connection.html#method.session
2151 #[inline]
2152 pub fn set_session(&mut self, session: &[u8]) -> Result<()> {
2153 let mut b = octets::Octets::with_slice(session);
2154
2155 let session_len = b.get_u64()? as usize;
2156 let session_bytes = b.get_bytes(session_len)?;
2157
2158 self.handshake.set_session(session_bytes.as_ref())?;
2159
2160 let raw_params_len = b.get_u64()? as usize;
2161 let raw_params_bytes = b.get_bytes(raw_params_len)?;
2162
2163 let peer_params = TransportParams::decode(
2164 raw_params_bytes.as_ref(),
2165 self.is_server,
2166 self.peer_transport_params_track_unknown,
2167 )?;
2168
2169 self.process_peer_transport_params(peer_params)?;
2170
2171 Ok(())
2172 }
2173
2174 /// Sets the `max_idle_timeout` transport parameter, in milliseconds.
2175 ///
2176 /// This must only be called immediately after creating a connection, that
2177 /// is, before any packet is sent or received.
2178 ///
2179 /// The default value is infinite, that is, no timeout is used unless
2180 /// already configured when creating the connection.
2181 pub fn set_max_idle_timeout(&mut self, v: u64) -> Result<()> {
2182 self.local_transport_params.max_idle_timeout =
2183 cmp::min(v, octets::MAX_VAR_INT);
2184
2185 self.encode_transport_params()
2186 }
2187
2188 /// Sets the congestion control algorithm used.
2189 ///
2190 /// This function can only be called inside one of BoringSSL's handshake
2191 /// callbacks, before any packet has been sent. Calling this function any
2192 /// other time will have no effect.
2193 ///
2194 /// See [`Config::set_cc_algorithm()`].
2195 ///
2196 /// [`Config::set_cc_algorithm()`]: struct.Config.html#method.set_cc_algorithm
2197 #[cfg(feature = "boringssl-boring-crate")]
2198 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
2199 pub fn set_cc_algorithm_in_handshake(
2200 ssl: &mut boring::ssl::SslRef, algo: CongestionControlAlgorithm,
2201 ) -> Result<()> {
2202 let ex_data = tls::ExData::from_ssl_ref(ssl).ok_or(Error::TlsFail)?;
2203
2204 ex_data.recovery_config.cc_algorithm = algo;
2205
2206 Ok(())
2207 }
2208
2209 /// Sets custom BBR settings.
2210 ///
2211 /// This API is experimental and will be removed in the future.
2212 ///
2213 /// Currently this only applies if cc_algorithm is
2214 /// `CongestionControlAlgorithm::Bbr2Gcongestion` is set.
2215 ///
2216 /// This function can only be called inside one of BoringSSL's handshake
2217 /// callbacks, before any packet has been sent. Calling this function any
2218 /// other time will have no effect.
2219 ///
2220 /// See [`Config::set_custom_bbr_settings()`].
2221 ///
2222 /// [`Config::set_custom_bbr_settings()`]: struct.Config.html#method.set_custom_bbr_settings
2223 #[cfg(all(feature = "boringssl-boring-crate", feature = "internal"))]
2224 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
2225 #[doc(hidden)]
2226 pub fn set_custom_bbr_settings_in_handshake(
2227 ssl: &mut boring::ssl::SslRef, custom_bbr_params: BbrParams,
2228 ) -> Result<()> {
2229 let ex_data = tls::ExData::from_ssl_ref(ssl).ok_or(Error::TlsFail)?;
2230
2231 ex_data.recovery_config.custom_bbr_params = Some(custom_bbr_params);
2232
2233 Ok(())
2234 }
2235
2236 /// Sets the congestion control algorithm used by string.
2237 ///
2238 /// This function can only be called inside one of BoringSSL's handshake
2239 /// callbacks, before any packet has been sent. Calling this function any
2240 /// other time will have no effect.
2241 ///
2242 /// See [`Config::set_cc_algorithm_name()`].
2243 ///
2244 /// [`Config::set_cc_algorithm_name()`]: struct.Config.html#method.set_cc_algorithm_name
2245 #[cfg(feature = "boringssl-boring-crate")]
2246 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
2247 pub fn set_cc_algorithm_name_in_handshake(
2248 ssl: &mut boring::ssl::SslRef, name: &str,
2249 ) -> Result<()> {
2250 let cc_algo = CongestionControlAlgorithm::from_str(name)?;
2251 Self::set_cc_algorithm_in_handshake(ssl, cc_algo)
2252 }
2253
2254 /// Sets initial congestion window size in terms of packet count.
2255 ///
2256 /// This function can only be called inside one of BoringSSL's handshake
2257 /// callbacks, before any packet has been sent. Calling this function any
2258 /// other time will have no effect.
2259 ///
2260 /// See [`Config::set_initial_congestion_window_packets()`].
2261 ///
2262 /// [`Config::set_initial_congestion_window_packets()`]: struct.Config.html#method.set_initial_congestion_window_packets
2263 #[cfg(feature = "boringssl-boring-crate")]
2264 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
2265 pub fn set_initial_congestion_window_packets_in_handshake(
2266 ssl: &mut boring::ssl::SslRef, packets: usize,
2267 ) -> Result<()> {
2268 let ex_data = tls::ExData::from_ssl_ref(ssl).ok_or(Error::TlsFail)?;
2269
2270 ex_data.recovery_config.initial_congestion_window_packets = packets;
2271
2272 Ok(())
2273 }
2274
2275 /// Configure whether to enable relaxed loss detection on spurious loss.
2276 ///
2277 /// This function can only be called inside one of BoringSSL's handshake
2278 /// callbacks, before any packet has been sent. Calling this function any
2279 /// other time will have no effect.
2280 ///
2281 /// See [`Config::set_enable_relaxed_loss_threshold()`].
2282 ///
2283 /// [`Config::set_enable_relaxed_loss_threshold()`]: struct.Config.html#method.set_enable_relaxed_loss_threshold
2284 #[cfg(feature = "boringssl-boring-crate")]
2285 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
2286 pub fn set_enable_relaxed_loss_threshold_in_handshake(
2287 ssl: &mut boring::ssl::SslRef, enable: bool,
2288 ) -> Result<()> {
2289 let ex_data = tls::ExData::from_ssl_ref(ssl).ok_or(Error::TlsFail)?;
2290
2291 ex_data.recovery_config.enable_relaxed_loss_threshold = enable;
2292
2293 Ok(())
2294 }
2295
2296 /// Configures whether to enable HyStart++.
2297 ///
2298 /// This function can only be called inside one of BoringSSL's handshake
2299 /// callbacks, before any packet has been sent. Calling this function any
2300 /// other time will have no effect.
2301 ///
2302 /// See [`Config::enable_hystart()`].
2303 ///
2304 /// [`Config::enable_hystart()`]: struct.Config.html#method.enable_hystart
2305 #[cfg(feature = "boringssl-boring-crate")]
2306 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
2307 pub fn set_hystart_in_handshake(
2308 ssl: &mut boring::ssl::SslRef, v: bool,
2309 ) -> Result<()> {
2310 let ex_data = tls::ExData::from_ssl_ref(ssl).ok_or(Error::TlsFail)?;
2311
2312 ex_data.recovery_config.hystart = v;
2313
2314 Ok(())
2315 }
2316
2317 /// Configures whether to enable pacing.
2318 ///
2319 /// This function can only be called inside one of BoringSSL's handshake
2320 /// callbacks, before any packet has been sent. Calling this function any
2321 /// other time will have no effect.
2322 ///
2323 /// See [`Config::enable_pacing()`].
2324 ///
2325 /// [`Config::enable_pacing()`]: struct.Config.html#method.enable_pacing
2326 #[cfg(feature = "boringssl-boring-crate")]
2327 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
2328 pub fn set_pacing_in_handshake(
2329 ssl: &mut boring::ssl::SslRef, v: bool,
2330 ) -> Result<()> {
2331 let ex_data = tls::ExData::from_ssl_ref(ssl).ok_or(Error::TlsFail)?;
2332
2333 ex_data.recovery_config.pacing = v;
2334
2335 Ok(())
2336 }
2337
2338 /// Sets the max value for pacing rate.
2339 ///
2340 /// This function can only be called inside one of BoringSSL's handshake
2341 /// callbacks, before any packet has been sent. Calling this function any
2342 /// other time will have no effect.
2343 ///
2344 /// See [`Config::set_max_pacing_rate()`].
2345 ///
2346 /// [`Config::set_max_pacing_rate()`]: struct.Config.html#method.set_max_pacing_rate
2347 #[cfg(feature = "boringssl-boring-crate")]
2348 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
2349 pub fn set_max_pacing_rate_in_handshake(
2350 ssl: &mut boring::ssl::SslRef, v: Option<u64>,
2351 ) -> Result<()> {
2352 let ex_data = tls::ExData::from_ssl_ref(ssl).ok_or(Error::TlsFail)?;
2353
2354 ex_data.recovery_config.max_pacing_rate = v;
2355
2356 Ok(())
2357 }
2358
2359 /// Sets the maximum outgoing UDP payload size.
2360 ///
2361 /// This function can only be called inside one of BoringSSL's handshake
2362 /// callbacks, before any packet has been sent. Calling this function any
2363 /// other time will have no effect.
2364 ///
2365 /// See [`Config::set_max_send_udp_payload_size()`].
2366 ///
2367 /// [`Config::set_max_send_udp_payload_size()`]: struct.Config.html#method.set_max_send_udp_payload_size
2368 #[cfg(feature = "boringssl-boring-crate")]
2369 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
2370 pub fn set_max_send_udp_payload_size_in_handshake(
2371 ssl: &mut boring::ssl::SslRef, v: usize,
2372 ) -> Result<()> {
2373 let ex_data = tls::ExData::from_ssl_ref(ssl).ok_or(Error::TlsFail)?;
2374
2375 ex_data.recovery_config.max_send_udp_payload_size = v;
2376
2377 Ok(())
2378 }
2379
2380 /// Sets the send capacity factor.
2381 ///
2382 /// This function can only be called inside one of BoringSSL's handshake
2383 /// callbacks, before any packet has been sent. Calling this function any
2384 /// other time will have no effect.
2385 ///
2386 /// See [`Config::set_send_capacity_factor()`].
2387 ///
2388 /// [`Config::set_max_send_udp_payload_size()`]: struct.Config.html#method.set_send_capacity_factor
2389 #[cfg(feature = "boringssl-boring-crate")]
2390 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
2391 pub fn set_send_capacity_factor_in_handshake(
2392 ssl: &mut boring::ssl::SslRef, v: f64,
2393 ) -> Result<()> {
2394 let ex_data = tls::ExData::from_ssl_ref(ssl).ok_or(Error::TlsFail)?;
2395
2396 ex_data.tx_cap_factor = v;
2397
2398 Ok(())
2399 }
2400
2401 /// Configures whether to do path MTU discovery.
2402 ///
2403 /// This function can only be called inside one of BoringSSL's handshake
2404 /// callbacks, before any packet has been sent. Calling this function any
2405 /// other time will have no effect.
2406 ///
2407 /// See [`Config::discover_pmtu()`].
2408 ///
2409 /// [`Config::discover_pmtu()`]: struct.Config.html#method.discover_pmtu
2410 #[cfg(feature = "boringssl-boring-crate")]
2411 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
2412 pub fn set_discover_pmtu_in_handshake(
2413 ssl: &mut boring::ssl::SslRef, discover: bool,
2414 ) -> Result<()> {
2415 let ex_data = tls::ExData::from_ssl_ref(ssl).ok_or(Error::TlsFail)?;
2416
2417 ex_data.pmtud = Some(discover);
2418
2419 Ok(())
2420 }
2421
2422 /// Sets the `max_idle_timeout` transport parameter, in milliseconds.
2423 ///
2424 /// This function can only be called inside one of BoringSSL's handshake
2425 /// callbacks, before any packet has been sent. Calling this function any
2426 /// other time will have no effect.
2427 ///
2428 /// See [`Config::set_max_idle_timeout()`].
2429 ///
2430 /// [`Config::set_max_idle_timeout()`]: struct.Config.html#method.set_max_idle_timeout
2431 #[cfg(feature = "boringssl-boring-crate")]
2432 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
2433 pub fn set_max_idle_timeout_in_handshake(
2434 ssl: &mut boring::ssl::SslRef, v: u64,
2435 ) -> Result<()> {
2436 let ex_data = tls::ExData::from_ssl_ref(ssl).ok_or(Error::TlsFail)?;
2437
2438 ex_data.local_transport_params.max_idle_timeout = v;
2439
2440 Self::set_transport_parameters_in_hanshake(
2441 ex_data.local_transport_params.clone(),
2442 ex_data.is_server,
2443 ssl,
2444 )
2445 }
2446
2447 /// Sets the `initial_max_streams_bidi` transport parameter.
2448 ///
2449 /// This function can only be called inside one of BoringSSL's handshake
2450 /// callbacks, before any packet has been sent. Calling this function any
2451 /// other time will have no effect.
2452 ///
2453 /// See [`Config::set_initial_max_streams_bidi()`].
2454 ///
2455 /// [`Config::set_initial_max_streams_bidi()`]: struct.Config.html#method.set_initial_max_streams_bidi
2456 #[cfg(feature = "boringssl-boring-crate")]
2457 #[cfg_attr(docsrs, doc(cfg(feature = "boringssl-boring-crate")))]
2458 pub fn set_initial_max_streams_bidi_in_handshake(
2459 ssl: &mut boring::ssl::SslRef, v: u64,
2460 ) -> Result<()> {
2461 let ex_data = tls::ExData::from_ssl_ref(ssl).ok_or(Error::TlsFail)?;
2462
2463 ex_data.local_transport_params.initial_max_streams_bidi = v;
2464
2465 Self::set_transport_parameters_in_hanshake(
2466 ex_data.local_transport_params.clone(),
2467 ex_data.is_server,
2468 ssl,
2469 )
2470 }
2471
2472 #[cfg(feature = "boringssl-boring-crate")]
2473 fn set_transport_parameters_in_hanshake(
2474 params: TransportParams, is_server: bool, ssl: &mut boring::ssl::SslRef,
2475 ) -> Result<()> {
2476 use foreign_types_shared::ForeignTypeRef;
2477
2478 // In order to apply the new parameter to the TLS state before TPs are
2479 // written into a TLS message, we need to re-encode all TPs immediately.
2480 //
2481 // Since we don't have direct access to the main `Connection` object, we
2482 // need to re-create the `Handshake` state from the `SslRef`.
2483 //
2484 // SAFETY: the `Handshake` object must not be drop()ed, otherwise it
2485 // would free the underlying BoringSSL structure.
2486 let mut handshake =
2487 unsafe { tls::Handshake::from_ptr(ssl.as_ptr() as _) };
2488 handshake.set_quic_transport_params(¶ms, is_server)?;
2489
2490 // Avoid running `drop(handshake)` as that would free the underlying
2491 // handshake state.
2492 std::mem::forget(handshake);
2493
2494 Ok(())
2495 }
2496
2497 /// Processes QUIC packets received from the peer.
2498 ///
2499 /// On success the number of bytes processed from the input buffer is
2500 /// returned. On error the connection will be closed by calling [`close()`]
2501 /// with the appropriate error code.
2502 ///
2503 /// Coalesced packets will be processed as necessary.
2504 ///
2505 /// Note that the contents of the input buffer `buf` might be modified by
2506 /// this function due to, for example, in-place decryption.
2507 ///
2508 /// [`close()`]: struct.Connection.html#method.close
2509 ///
2510 /// ## Examples:
2511 ///
2512 /// ```no_run
2513 /// # let mut buf = [0; 512];
2514 /// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
2515 /// # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
2516 /// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
2517 /// # let peer = "127.0.0.1:1234".parse().unwrap();
2518 /// # let local = socket.local_addr().unwrap();
2519 /// # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
2520 /// loop {
2521 /// let (read, from) = socket.recv_from(&mut buf).unwrap();
2522 ///
2523 /// let recv_info = quiche::RecvInfo {
2524 /// from,
2525 /// to: local,
2526 /// };
2527 ///
2528 /// let read = match conn.recv(&mut buf[..read], recv_info) {
2529 /// Ok(v) => v,
2530 ///
2531 /// Err(e) => {
2532 /// // An error occurred, handle it.
2533 /// break;
2534 /// },
2535 /// };
2536 /// }
2537 /// # Ok::<(), quiche::Error>(())
2538 /// ```
2539 pub fn recv(&mut self, buf: &mut [u8], info: RecvInfo) -> Result<usize> {
2540 let len = buf.len();
2541
2542 if len == 0 {
2543 return Err(Error::BufferTooShort);
2544 }
2545
2546 let recv_pid = self.paths.path_id_from_addrs(&(info.to, info.from));
2547
2548 if let Some(recv_pid) = recv_pid {
2549 let recv_path = self.paths.get_mut(recv_pid)?;
2550
2551 // Keep track of how many bytes we received from the client, so we
2552 // can limit bytes sent back before address validation, to a
2553 // multiple of this. The limit needs to be increased early on, so
2554 // that if there is an error there is enough credit to send a
2555 // CONNECTION_CLOSE.
2556 //
2557 // It doesn't matter if the packets received were valid or not, we
2558 // only need to track the total amount of bytes received.
2559 //
2560 // Note that we also need to limit the number of bytes we sent on a
2561 // path if we are not the host that initiated its usage.
2562 if self.is_server && !recv_path.verified_peer_address {
2563 recv_path.max_send_bytes += len * self.max_amplification_factor;
2564 }
2565 } else if !self.is_server {
2566 // If a client receives packets from an unknown server address,
2567 // the client MUST discard these packets.
2568 trace!(
2569 "{} client received packet from unknown address {:?}, dropping",
2570 self.trace_id,
2571 info,
2572 );
2573
2574 return Ok(len);
2575 }
2576
2577 let mut done = 0;
2578 let mut left = len;
2579
2580 // Process coalesced packets.
2581 while left > 0 {
2582 let read = match self.recv_single(
2583 &mut buf[len - left..len],
2584 &info,
2585 recv_pid,
2586 ) {
2587 Ok(v) => v,
2588
2589 Err(Error::Done) => {
2590 // If the packet can't be processed or decrypted, check if
2591 // it's a stateless reset.
2592 if self.is_stateless_reset(&buf[len - left..len]) {
2593 trace!("{} packet is a stateless reset", self.trace_id);
2594
2595 self.mark_closed();
2596 }
2597
2598 left
2599 },
2600
2601 Err(e) => {
2602 // In case of error processing the incoming packet, close
2603 // the connection.
2604 self.close(false, e.to_wire(), b"").ok();
2605 return Err(e);
2606 },
2607 };
2608
2609 done += read;
2610 left -= read;
2611 }
2612
2613 // Even though the packet was previously "accepted", it
2614 // should be safe to forward the error, as it also comes
2615 // from the `recv()` method.
2616 self.process_undecrypted_0rtt_packets()?;
2617
2618 Ok(done)
2619 }
2620
2621 fn process_undecrypted_0rtt_packets(&mut self) -> Result<()> {
2622 // Process previously undecryptable 0-RTT packets if the decryption key
2623 // is now available.
2624 if self.crypto_ctx[packet::Epoch::Application]
2625 .crypto_0rtt_open
2626 .is_some()
2627 {
2628 while let Some((mut pkt, info)) = self.undecryptable_pkts.pop_front()
2629 {
2630 if let Err(e) = self.recv(&mut pkt, info) {
2631 self.undecryptable_pkts.clear();
2632
2633 return Err(e);
2634 }
2635 }
2636 }
2637 Ok(())
2638 }
2639
2640 /// Returns true if a QUIC packet is a stateless reset.
2641 fn is_stateless_reset(&self, buf: &[u8]) -> bool {
2642 // If the packet is too small, then we just throw it away.
2643 let buf_len = buf.len();
2644 if buf_len < 21 {
2645 return false;
2646 }
2647
2648 // TODO: we should iterate over all active destination connection IDs
2649 // and check against their reset token.
2650 match self.peer_transport_params.stateless_reset_token {
2651 Some(token) => {
2652 let token_len = 16;
2653
2654 crypto::verify_slices_are_equal(
2655 &token.to_be_bytes(),
2656 &buf[buf_len - token_len..buf_len],
2657 )
2658 .is_ok()
2659 },
2660
2661 None => false,
2662 }
2663 }
2664
2665 /// Processes a single QUIC packet received from the peer.
2666 ///
2667 /// On success the number of bytes processed from the input buffer is
2668 /// returned. When the [`Done`] error is returned, processing of the
2669 /// remainder of the incoming UDP datagram should be interrupted.
2670 ///
2671 /// Note that a server might observe a new 4-tuple, preventing to
2672 /// know in advance to which path the incoming packet belongs to (`recv_pid`
2673 /// is `None`). As a client, packets from unknown 4-tuple are dropped
2674 /// beforehand (see `recv()`).
2675 ///
2676 /// On error, an error other than [`Done`] is returned.
2677 ///
2678 /// [`Done`]: enum.Error.html#variant.Done
2679 fn recv_single(
2680 &mut self, buf: &mut [u8], info: &RecvInfo, recv_pid: Option<usize>,
2681 ) -> Result<usize> {
2682 let now = Instant::now();
2683
2684 if buf.is_empty() {
2685 return Err(Error::Done);
2686 }
2687
2688 if self.is_closed() || self.is_draining() {
2689 return Err(Error::Done);
2690 }
2691
2692 let is_closing = self.local_error.is_some();
2693
2694 if is_closing {
2695 return Err(Error::Done);
2696 }
2697
2698 let buf_len = buf.len();
2699
2700 let mut b = octets::OctetsMut::with_slice(buf);
2701
2702 let mut hdr = Header::from_bytes(&mut b, self.source_id().len())
2703 .map_err(|e| {
2704 drop_pkt_on_err(
2705 e,
2706 self.recv_count,
2707 self.is_server,
2708 &self.trace_id,
2709 )
2710 })?;
2711
2712 if hdr.ty == Type::VersionNegotiation {
2713 // Version negotiation packets can only be sent by the server.
2714 if self.is_server {
2715 return Err(Error::Done);
2716 }
2717
2718 // Ignore duplicate version negotiation.
2719 if self.did_version_negotiation {
2720 return Err(Error::Done);
2721 }
2722
2723 // Ignore version negotiation if any other packet has already been
2724 // successfully processed.
2725 if self.recv_count > 0 {
2726 return Err(Error::Done);
2727 }
2728
2729 if hdr.dcid != self.source_id() {
2730 return Err(Error::Done);
2731 }
2732
2733 if hdr.scid != self.destination_id() {
2734 return Err(Error::Done);
2735 }
2736
2737 trace!("{} rx pkt {:?}", self.trace_id, hdr);
2738
2739 let versions = hdr.versions.ok_or(Error::Done)?;
2740
2741 // Ignore version negotiation if the version already selected is
2742 // listed.
2743 if versions.contains(&self.version) {
2744 return Err(Error::Done);
2745 }
2746
2747 let supported_versions =
2748 versions.iter().filter(|&&v| version_is_supported(v));
2749
2750 let mut found_version = false;
2751
2752 for &v in supported_versions {
2753 found_version = true;
2754
2755 // The final version takes precedence over draft ones.
2756 if v == PROTOCOL_VERSION_V1 {
2757 self.version = v;
2758 break;
2759 }
2760
2761 self.version = cmp::max(self.version, v);
2762 }
2763
2764 if !found_version {
2765 // We don't support any of the versions offered.
2766 //
2767 // While a man-in-the-middle attacker might be able to
2768 // inject a version negotiation packet that triggers this
2769 // failure, the window of opportunity is very small and
2770 // this error is quite useful for debugging, so don't just
2771 // ignore the packet.
2772 return Err(Error::UnknownVersion);
2773 }
2774
2775 self.did_version_negotiation = true;
2776
2777 // Derive Initial secrets based on the new version.
2778 let (aead_open, aead_seal) = crypto::derive_initial_key_material(
2779 &self.destination_id(),
2780 self.version,
2781 self.is_server,
2782 true,
2783 )?;
2784
2785 // Reset connection state to force sending another Initial packet.
2786 self.drop_epoch_state(packet::Epoch::Initial, now);
2787 self.got_peer_conn_id = false;
2788 self.handshake.clear()?;
2789
2790 self.crypto_ctx[packet::Epoch::Initial].crypto_open = Some(aead_open);
2791 self.crypto_ctx[packet::Epoch::Initial].crypto_seal = Some(aead_seal);
2792
2793 self.handshake
2794 .use_legacy_codepoint(self.version != PROTOCOL_VERSION_V1);
2795
2796 // Encode transport parameters again, as the new version might be
2797 // using a different format.
2798 self.encode_transport_params()?;
2799
2800 return Err(Error::Done);
2801 }
2802
2803 if hdr.ty == Type::Retry {
2804 // Retry packets can only be sent by the server.
2805 if self.is_server {
2806 return Err(Error::Done);
2807 }
2808
2809 // Ignore duplicate retry.
2810 if self.did_retry {
2811 return Err(Error::Done);
2812 }
2813
2814 // Check if Retry packet is valid.
2815 if packet::verify_retry_integrity(
2816 &b,
2817 &self.destination_id(),
2818 self.version,
2819 )
2820 .is_err()
2821 {
2822 return Err(Error::Done);
2823 }
2824
2825 trace!("{} rx pkt {:?}", self.trace_id, hdr);
2826
2827 self.token = hdr.token;
2828 self.did_retry = true;
2829
2830 // Remember peer's new connection ID.
2831 self.odcid = Some(self.destination_id().into_owned());
2832
2833 self.set_initial_dcid(
2834 hdr.scid.clone(),
2835 None,
2836 self.paths.get_active_path_id()?,
2837 )?;
2838
2839 self.rscid = Some(self.destination_id().into_owned());
2840
2841 // Derive Initial secrets using the new connection ID.
2842 let (aead_open, aead_seal) = crypto::derive_initial_key_material(
2843 &hdr.scid,
2844 self.version,
2845 self.is_server,
2846 true,
2847 )?;
2848
2849 // Reset connection state to force sending another Initial packet.
2850 self.drop_epoch_state(packet::Epoch::Initial, now);
2851 self.got_peer_conn_id = false;
2852 self.handshake.clear()?;
2853
2854 self.crypto_ctx[packet::Epoch::Initial].crypto_open = Some(aead_open);
2855 self.crypto_ctx[packet::Epoch::Initial].crypto_seal = Some(aead_seal);
2856
2857 return Err(Error::Done);
2858 }
2859
2860 if self.is_server && !self.did_version_negotiation {
2861 if !version_is_supported(hdr.version) {
2862 return Err(Error::UnknownVersion);
2863 }
2864
2865 self.version = hdr.version;
2866 self.did_version_negotiation = true;
2867
2868 self.handshake
2869 .use_legacy_codepoint(self.version != PROTOCOL_VERSION_V1);
2870
2871 // Encode transport parameters again, as the new version might be
2872 // using a different format.
2873 self.encode_transport_params()?;
2874 }
2875
2876 if hdr.ty != Type::Short && hdr.version != self.version {
2877 // At this point version negotiation was already performed, so
2878 // ignore packets that don't match the connection's version.
2879 return Err(Error::Done);
2880 }
2881
2882 // Long header packets have an explicit payload length, but short
2883 // packets don't so just use the remaining capacity in the buffer.
2884 let payload_len = if hdr.ty == Type::Short {
2885 b.cap()
2886 } else {
2887 b.get_varint().map_err(|e| {
2888 drop_pkt_on_err(
2889 e.into(),
2890 self.recv_count,
2891 self.is_server,
2892 &self.trace_id,
2893 )
2894 })? as usize
2895 };
2896
2897 // Make sure the buffer is same or larger than an explicit
2898 // payload length.
2899 if payload_len > b.cap() {
2900 return Err(drop_pkt_on_err(
2901 Error::InvalidPacket,
2902 self.recv_count,
2903 self.is_server,
2904 &self.trace_id,
2905 ));
2906 }
2907
2908 // Derive initial secrets on the server.
2909 if !self.derived_initial_secrets {
2910 let (aead_open, aead_seal) = crypto::derive_initial_key_material(
2911 &hdr.dcid,
2912 self.version,
2913 self.is_server,
2914 false,
2915 )?;
2916
2917 self.crypto_ctx[packet::Epoch::Initial].crypto_open = Some(aead_open);
2918 self.crypto_ctx[packet::Epoch::Initial].crypto_seal = Some(aead_seal);
2919
2920 self.derived_initial_secrets = true;
2921 }
2922
2923 // Select packet number space epoch based on the received packet's type.
2924 let epoch = hdr.ty.to_epoch()?;
2925
2926 // Select AEAD context used to open incoming packet.
2927 let aead = if hdr.ty == Type::ZeroRTT {
2928 // Only use 0-RTT key if incoming packet is 0-RTT.
2929 self.crypto_ctx[epoch].crypto_0rtt_open.as_ref()
2930 } else {
2931 // Otherwise use the packet number space's main key.
2932 self.crypto_ctx[epoch].crypto_open.as_ref()
2933 };
2934
2935 // Finally, discard packet if no usable key is available.
2936 let mut aead = match aead {
2937 Some(v) => v,
2938
2939 None => {
2940 if hdr.ty == Type::ZeroRTT &&
2941 self.undecryptable_pkts.len() < MAX_UNDECRYPTABLE_PACKETS &&
2942 !self.is_established()
2943 {
2944 // Buffer 0-RTT packets when the required read key is not
2945 // available yet, and process them later.
2946 //
2947 // TODO: in the future we might want to buffer other types
2948 // of undecryptable packets as well.
2949 let pkt_len = b.off() + payload_len;
2950 let pkt = (b.buf()[..pkt_len]).to_vec();
2951
2952 self.undecryptable_pkts.push_back((pkt, *info));
2953 return Ok(pkt_len);
2954 }
2955
2956 let e = drop_pkt_on_err(
2957 Error::CryptoFail,
2958 self.recv_count,
2959 self.is_server,
2960 &self.trace_id,
2961 );
2962
2963 return Err(e);
2964 },
2965 };
2966
2967 let aead_tag_len = aead.alg().tag_len();
2968
2969 packet::decrypt_hdr(&mut b, &mut hdr, aead).map_err(|e| {
2970 drop_pkt_on_err(e, self.recv_count, self.is_server, &self.trace_id)
2971 })?;
2972
2973 let pn = packet::decode_pkt_num(
2974 self.pkt_num_spaces[epoch].largest_rx_pkt_num,
2975 hdr.pkt_num,
2976 hdr.pkt_num_len,
2977 );
2978
2979 let pn_len = hdr.pkt_num_len;
2980
2981 trace!(
2982 "{} rx pkt {:?} len={} pn={} {}",
2983 self.trace_id,
2984 hdr,
2985 payload_len,
2986 pn,
2987 AddrTupleFmt(info.from, info.to)
2988 );
2989
2990 #[cfg(feature = "qlog")]
2991 let mut qlog_frames = vec![];
2992
2993 // Check for key update.
2994 let mut aead_next = None;
2995
2996 if self.handshake_confirmed &&
2997 hdr.ty != Type::ZeroRTT &&
2998 hdr.key_phase != self.key_phase
2999 {
3000 // Check if this packet arrived before key update.
3001 if let Some(key_update) = self.crypto_ctx[epoch]
3002 .key_update
3003 .as_ref()
3004 .and_then(|key_update| {
3005 (pn < key_update.pn_on_update).then_some(key_update)
3006 })
3007 {
3008 aead = &key_update.crypto_open;
3009 } else {
3010 trace!("{} peer-initiated key update", self.trace_id);
3011
3012 aead_next = Some((
3013 self.crypto_ctx[epoch]
3014 .crypto_open
3015 .as_ref()
3016 .unwrap()
3017 .derive_next_packet_key()?,
3018 self.crypto_ctx[epoch]
3019 .crypto_seal
3020 .as_ref()
3021 .unwrap()
3022 .derive_next_packet_key()?,
3023 ));
3024
3025 // `aead_next` is always `Some()` at this point, so the `unwrap()`
3026 // will never fail.
3027 aead = &aead_next.as_ref().unwrap().0;
3028 }
3029 }
3030
3031 let mut payload = packet::decrypt_pkt(
3032 &mut b,
3033 pn,
3034 pn_len,
3035 payload_len,
3036 aead,
3037 )
3038 .map_err(|e| {
3039 drop_pkt_on_err(e, self.recv_count, self.is_server, &self.trace_id)
3040 })?;
3041
3042 if self.pkt_num_spaces[epoch].recv_pkt_num.contains(pn) {
3043 trace!("{} ignored duplicate packet {}", self.trace_id, pn);
3044 return Err(Error::Done);
3045 }
3046
3047 // Packets with no frames are invalid.
3048 if payload.cap() == 0 {
3049 return Err(Error::InvalidPacket);
3050 }
3051
3052 // Now that we decrypted the packet, let's see if we can map it to an
3053 // existing path.
3054 let recv_pid = if hdr.ty == Type::Short && self.got_peer_conn_id {
3055 let pkt_dcid = ConnectionId::from_ref(&hdr.dcid);
3056 self.get_or_create_recv_path_id(recv_pid, &pkt_dcid, buf_len, info)?
3057 } else {
3058 // During handshake, we are on the initial path.
3059 self.paths.get_active_path_id()?
3060 };
3061
3062 // The key update is verified once a packet is successfully decrypted
3063 // using the new keys.
3064 if let Some((open_next, seal_next)) = aead_next {
3065 if !self.crypto_ctx[epoch]
3066 .key_update
3067 .as_ref()
3068 .is_none_or(|prev| prev.update_acked)
3069 {
3070 // Peer has updated keys twice without awaiting confirmation.
3071 return Err(Error::KeyUpdate);
3072 }
3073
3074 trace!("{} key update verified", self.trace_id);
3075
3076 let _ = self.crypto_ctx[epoch].crypto_seal.replace(seal_next);
3077
3078 let open_prev = self.crypto_ctx[epoch]
3079 .crypto_open
3080 .replace(open_next)
3081 .unwrap();
3082
3083 let recv_path = self.paths.get_mut(recv_pid)?;
3084
3085 self.crypto_ctx[epoch].key_update = Some(packet::KeyUpdate {
3086 crypto_open: open_prev,
3087 pn_on_update: pn,
3088 update_acked: false,
3089 timer: now + (recv_path.recovery.pto() * 3),
3090 });
3091
3092 self.key_phase = !self.key_phase;
3093
3094 qlog_with_type!(QLOG_PACKET_RX, self.qlog, q, {
3095 let trigger = Some(
3096 qlog::events::security::KeyUpdateOrRetiredTrigger::RemoteUpdate,
3097 );
3098
3099 let ev_data_client =
3100 EventData::KeyUpdated(qlog::events::security::KeyUpdated {
3101 key_type:
3102 qlog::events::security::KeyType::Client1RttSecret,
3103 trigger: trigger.clone(),
3104 ..Default::default()
3105 });
3106
3107 q.add_event_data_with_instant(ev_data_client, now).ok();
3108
3109 let ev_data_server =
3110 EventData::KeyUpdated(qlog::events::security::KeyUpdated {
3111 key_type:
3112 qlog::events::security::KeyType::Server1RttSecret,
3113 trigger,
3114 ..Default::default()
3115 });
3116
3117 q.add_event_data_with_instant(ev_data_server, now).ok();
3118 });
3119 }
3120
3121 if !self.is_server && !self.got_peer_conn_id {
3122 if self.odcid.is_none() {
3123 self.odcid = Some(self.destination_id().into_owned());
3124 }
3125
3126 // Replace the randomly generated destination connection ID with
3127 // the one supplied by the server.
3128 self.set_initial_dcid(
3129 hdr.scid.clone(),
3130 self.peer_transport_params.stateless_reset_token,
3131 recv_pid,
3132 )?;
3133
3134 self.got_peer_conn_id = true;
3135 }
3136
3137 if self.is_server && !self.got_peer_conn_id {
3138 self.set_initial_dcid(hdr.scid.clone(), None, recv_pid)?;
3139
3140 if !self.did_retry {
3141 self.local_transport_params
3142 .original_destination_connection_id =
3143 Some(hdr.dcid.to_vec().into());
3144
3145 self.encode_transport_params()?;
3146 }
3147
3148 self.got_peer_conn_id = true;
3149 }
3150
3151 // To avoid sending an ACK in response to an ACK-only packet, we need
3152 // to keep track of whether this packet contains any frame other than
3153 // ACK and PADDING.
3154 let mut ack_elicited = false;
3155
3156 // Process packet payload. If a frame cannot be processed, store the
3157 // error and stop further packet processing.
3158 let mut frame_processing_err = None;
3159
3160 // To know if the peer migrated the connection, we need to keep track
3161 // whether this is a non-probing packet.
3162 let mut probing = true;
3163
3164 // Process packet payload.
3165 while payload.cap() > 0 {
3166 let frame = frame::Frame::from_bytes(&mut payload, hdr.ty)?;
3167
3168 qlog_with_type!(QLOG_PACKET_RX, self.qlog, _q, {
3169 qlog_frames.push(frame.to_qlog());
3170 });
3171
3172 if frame.ack_eliciting() {
3173 ack_elicited = true;
3174 }
3175
3176 if !frame.probing() {
3177 probing = false;
3178 }
3179
3180 if let Err(e) = self.process_frame(frame, &hdr, recv_pid, epoch, now)
3181 {
3182 frame_processing_err = Some(e);
3183 break;
3184 }
3185 }
3186
3187 qlog_with_type!(QLOG_PACKET_RX, self.qlog, q, {
3188 let packet_size = b.len();
3189
3190 let qlog_pkt_hdr = qlog::events::quic::PacketHeader::with_type(
3191 hdr.ty.to_qlog(),
3192 Some(pn),
3193 Some(hdr.version),
3194 Some(&hdr.scid),
3195 Some(&hdr.dcid),
3196 );
3197
3198 let qlog_raw_info = RawInfo {
3199 length: Some(packet_size as u64),
3200 payload_length: Some(payload_len as u64),
3201 data: None,
3202 };
3203
3204 let ev_data =
3205 EventData::PacketReceived(qlog::events::quic::PacketReceived {
3206 header: qlog_pkt_hdr,
3207 frames: Some(qlog_frames),
3208 raw: Some(qlog_raw_info),
3209 ..Default::default()
3210 });
3211
3212 q.add_event_data_with_instant(ev_data, now).ok();
3213 });
3214
3215 qlog_with_type!(QLOG_PACKET_RX, self.qlog, q, {
3216 let recv_path = self.paths.get_mut(recv_pid)?;
3217 recv_path.recovery.maybe_qlog(q, now);
3218 });
3219
3220 if let Some(e) = frame_processing_err {
3221 // Any frame error is terminal, so now just return.
3222 return Err(e);
3223 }
3224
3225 // Only log the remote transport parameters once the connection is
3226 // established (i.e. after frames have been fully parsed) and only
3227 // once per connection.
3228 if self.is_established() {
3229 qlog_with_type!(QLOG_PARAMS_SET, self.qlog, q, {
3230 if !self.qlog.logged_peer_params {
3231 let ev_data = self
3232 .peer_transport_params
3233 .to_qlog(TransportOwner::Remote, self.handshake.cipher());
3234
3235 q.add_event_data_with_instant(ev_data, now).ok();
3236
3237 self.qlog.logged_peer_params = true;
3238 }
3239 });
3240 }
3241
3242 // Process acked frames. Note that several packets from several paths
3243 // might have been acked by the received packet.
3244 for (_, p) in self.paths.iter_mut() {
3245 while let Some(acked) = p.recovery.next_acked_frame(epoch) {
3246 match acked {
3247 frame::Frame::Ping {
3248 mtu_probe: Some(mtu_probe),
3249 } =>
3250 if let Some(pmtud) = p.pmtud.as_mut() {
3251 trace!(
3252 "{} pmtud probe acked; probe size {:?}",
3253 self.trace_id,
3254 mtu_probe
3255 );
3256
3257 // Ensure the probe is within the supported MTU range
3258 // before updating the max datagram size
3259 if let Some(current_mtu) =
3260 pmtud.successful_probe(mtu_probe)
3261 {
3262 qlog_with_type!(
3263 EventType::ConnectivityEventType(
3264 ConnectivityEventType::MtuUpdated
3265 ),
3266 self.qlog,
3267 q,
3268 {
3269 let pmtu_data = EventData::MtuUpdated(
3270 qlog::events::connectivity::MtuUpdated {
3271 old: Some(
3272 p.recovery.max_datagram_size()
3273 as u16,
3274 ),
3275 new: current_mtu as u16,
3276 done: Some(true),
3277 },
3278 );
3279
3280 q.add_event_data_with_instant(
3281 pmtu_data, now,
3282 )
3283 .ok();
3284 }
3285 );
3286
3287 p.recovery
3288 .pmtud_update_max_datagram_size(current_mtu);
3289 }
3290 },
3291
3292 frame::Frame::ACK { ranges, .. } => {
3293 // Stop acknowledging packets less than or equal to the
3294 // largest acknowledged in the sent ACK frame that, in
3295 // turn, got acked.
3296 if let Some(largest_acked) = ranges.last() {
3297 self.pkt_num_spaces[epoch]
3298 .recv_pkt_need_ack
3299 .remove_until(largest_acked);
3300 }
3301 },
3302
3303 frame::Frame::CryptoHeader { offset, length } => {
3304 self.crypto_ctx[epoch]
3305 .crypto_stream
3306 .send
3307 .ack_and_drop(offset, length);
3308 },
3309
3310 frame::Frame::StreamHeader {
3311 stream_id,
3312 offset,
3313 length,
3314 ..
3315 } => {
3316 // Update tx_buffered and emit qlog before checking if the
3317 // stream still exists. The client does need to ACK
3318 // frames that were received after the client sends a
3319 // ResetStream.
3320 self.tx_buffered =
3321 self.tx_buffered.saturating_sub(length);
3322
3323 qlog_with_type!(QLOG_DATA_MV, self.qlog, q, {
3324 let ev_data = EventData::DataMoved(
3325 qlog::events::quic::DataMoved {
3326 stream_id: Some(stream_id),
3327 offset: Some(offset),
3328 length: Some(length as u64),
3329 from: Some(DataRecipient::Transport),
3330 to: Some(DataRecipient::Dropped),
3331 ..Default::default()
3332 },
3333 );
3334
3335 q.add_event_data_with_instant(ev_data, now).ok();
3336 });
3337
3338 let stream = match self.streams.get_mut(stream_id) {
3339 Some(v) => v,
3340
3341 None => continue,
3342 };
3343
3344 stream.send.ack_and_drop(offset, length);
3345
3346 // Only collect the stream if it is complete and not
3347 // readable. If it is readable, it will get collected when
3348 // stream_recv() is used.
3349 if stream.is_complete() && !stream.is_readable() {
3350 let local = stream.local;
3351 self.streams.collect(stream_id, local);
3352 }
3353 },
3354
3355 frame::Frame::HandshakeDone => {
3356 // Explicitly set this to true, so that if the frame was
3357 // already scheduled for retransmission, it is aborted.
3358 self.handshake_done_sent = true;
3359
3360 self.handshake_done_acked = true;
3361 },
3362
3363 frame::Frame::ResetStream { stream_id, .. } => {
3364 let stream = match self.streams.get_mut(stream_id) {
3365 Some(v) => v,
3366
3367 None => continue,
3368 };
3369
3370 // Only collect the stream if it is complete and not
3371 // readable. If it is readable, it will get collected when
3372 // stream_recv() is used.
3373 if stream.is_complete() && !stream.is_readable() {
3374 let local = stream.local;
3375 self.streams.collect(stream_id, local);
3376 }
3377 },
3378
3379 _ => (),
3380 }
3381 }
3382 }
3383
3384 // Now that we processed all the frames, if there is a path that has no
3385 // Destination CID, try to allocate one.
3386 let no_dcid = self
3387 .paths
3388 .iter_mut()
3389 .filter(|(_, p)| p.active_dcid_seq.is_none());
3390
3391 for (pid, p) in no_dcid {
3392 if self.ids.zero_length_dcid() {
3393 p.active_dcid_seq = Some(0);
3394 continue;
3395 }
3396
3397 let dcid_seq = match self.ids.lowest_available_dcid_seq() {
3398 Some(seq) => seq,
3399 None => break,
3400 };
3401
3402 self.ids.link_dcid_to_path_id(dcid_seq, pid)?;
3403
3404 p.active_dcid_seq = Some(dcid_seq);
3405 }
3406
3407 // We only record the time of arrival of the largest packet number
3408 // that still needs to be acked, to be used for ACK delay calculation.
3409 if self.pkt_num_spaces[epoch].recv_pkt_need_ack.last() < Some(pn) {
3410 self.pkt_num_spaces[epoch].largest_rx_pkt_time = now;
3411 }
3412
3413 self.pkt_num_spaces[epoch].recv_pkt_num.insert(pn);
3414
3415 self.pkt_num_spaces[epoch].recv_pkt_need_ack.push_item(pn);
3416
3417 self.pkt_num_spaces[epoch].ack_elicited =
3418 cmp::max(self.pkt_num_spaces[epoch].ack_elicited, ack_elicited);
3419
3420 self.pkt_num_spaces[epoch].largest_rx_pkt_num =
3421 cmp::max(self.pkt_num_spaces[epoch].largest_rx_pkt_num, pn);
3422
3423 if !probing {
3424 self.pkt_num_spaces[epoch].largest_rx_non_probing_pkt_num = cmp::max(
3425 self.pkt_num_spaces[epoch].largest_rx_non_probing_pkt_num,
3426 pn,
3427 );
3428
3429 // Did the peer migrated to another path?
3430 let active_path_id = self.paths.get_active_path_id()?;
3431
3432 if self.is_server &&
3433 recv_pid != active_path_id &&
3434 self.pkt_num_spaces[epoch].largest_rx_non_probing_pkt_num == pn
3435 {
3436 self.on_peer_migrated(recv_pid, self.disable_dcid_reuse, now)?;
3437 }
3438 }
3439
3440 if let Some(idle_timeout) = self.idle_timeout() {
3441 self.idle_timer = Some(now + idle_timeout);
3442 }
3443
3444 // Update send capacity.
3445 self.update_tx_cap();
3446
3447 self.recv_count += 1;
3448 self.paths.get_mut(recv_pid)?.recv_count += 1;
3449
3450 let read = b.off() + aead_tag_len;
3451
3452 self.recv_bytes += read as u64;
3453 self.paths.get_mut(recv_pid)?.recv_bytes += read as u64;
3454
3455 // An Handshake packet has been received from the client and has been
3456 // successfully processed, so we can drop the initial state and consider
3457 // the client's address to be verified.
3458 if self.is_server && hdr.ty == Type::Handshake {
3459 self.drop_epoch_state(packet::Epoch::Initial, now);
3460
3461 self.paths.get_mut(recv_pid)?.verified_peer_address = true;
3462 }
3463
3464 self.ack_eliciting_sent = false;
3465
3466 Ok(read)
3467 }
3468
3469 /// Writes a single QUIC packet to be sent to the peer.
3470 ///
3471 /// On success the number of bytes written to the output buffer is
3472 /// returned, or [`Done`] if there was nothing to write.
3473 ///
3474 /// The application should call `send()` multiple times until [`Done`] is
3475 /// returned, indicating that there are no more packets to send. It is
3476 /// recommended that `send()` be called in the following cases:
3477 ///
3478 /// * When the application receives QUIC packets from the peer (that is,
3479 /// any time [`recv()`] is also called).
3480 ///
3481 /// * When the connection timer expires (that is, any time [`on_timeout()`]
3482 /// is also called).
3483 ///
3484 /// * When the application sends data to the peer (for example, any time
3485 /// [`stream_send()`] or [`stream_shutdown()`] are called).
3486 ///
3487 /// * When the application receives data from the peer (for example any
3488 /// time [`stream_recv()`] is called).
3489 ///
3490 /// Once [`is_draining()`] returns `true`, it is no longer necessary to call
3491 /// `send()` and all calls will return [`Done`].
3492 ///
3493 /// [`Done`]: enum.Error.html#variant.Done
3494 /// [`recv()`]: struct.Connection.html#method.recv
3495 /// [`on_timeout()`]: struct.Connection.html#method.on_timeout
3496 /// [`stream_send()`]: struct.Connection.html#method.stream_send
3497 /// [`stream_shutdown()`]: struct.Connection.html#method.stream_shutdown
3498 /// [`stream_recv()`]: struct.Connection.html#method.stream_recv
3499 /// [`is_draining()`]: struct.Connection.html#method.is_draining
3500 ///
3501 /// ## Examples:
3502 ///
3503 /// ```no_run
3504 /// # let mut out = [0; 512];
3505 /// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
3506 /// # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
3507 /// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
3508 /// # let peer = "127.0.0.1:1234".parse().unwrap();
3509 /// # let local = socket.local_addr().unwrap();
3510 /// # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
3511 /// loop {
3512 /// let (write, send_info) = match conn.send(&mut out) {
3513 /// Ok(v) => v,
3514 ///
3515 /// Err(quiche::Error::Done) => {
3516 /// // Done writing.
3517 /// break;
3518 /// },
3519 ///
3520 /// Err(e) => {
3521 /// // An error occurred, handle it.
3522 /// break;
3523 /// },
3524 /// };
3525 ///
3526 /// socket.send_to(&out[..write], &send_info.to).unwrap();
3527 /// }
3528 /// # Ok::<(), quiche::Error>(())
3529 /// ```
3530 pub fn send(&mut self, out: &mut [u8]) -> Result<(usize, SendInfo)> {
3531 self.send_on_path(out, None, None)
3532 }
3533
3534 /// Writes a single QUIC packet to be sent to the peer from the specified
3535 /// local address `from` to the destination address `to`.
3536 ///
3537 /// The behavior of this method differs depending on the value of the `from`
3538 /// and `to` parameters:
3539 ///
3540 /// * If both are `Some`, then the method only consider the 4-tuple
3541 /// (`from`, `to`). Application can monitor the 4-tuple availability,
3542 /// either by monitoring [`path_event_next()`] events or by relying on
3543 /// the [`paths_iter()`] method. If the provided 4-tuple does not exist
3544 /// on the connection (anymore), it returns an [`InvalidState`].
3545 ///
3546 /// * If `from` is `Some` and `to` is `None`, then the method only
3547 /// considers sending packets on paths having `from` as local address.
3548 ///
3549 /// * If `to` is `Some` and `from` is `None`, then the method only
3550 /// considers sending packets on paths having `to` as peer address.
3551 ///
3552 /// * If both are `None`, all available paths are considered.
3553 ///
3554 /// On success the number of bytes written to the output buffer is
3555 /// returned, or [`Done`] if there was nothing to write.
3556 ///
3557 /// The application should call `send_on_path()` multiple times until
3558 /// [`Done`] is returned, indicating that there are no more packets to
3559 /// send. It is recommended that `send_on_path()` be called in the
3560 /// following cases:
3561 ///
3562 /// * When the application receives QUIC packets from the peer (that is,
3563 /// any time [`recv()`] is also called).
3564 ///
3565 /// * When the connection timer expires (that is, any time [`on_timeout()`]
3566 /// is also called).
3567 ///
3568 /// * When the application sends data to the peer (for examples, any time
3569 /// [`stream_send()`] or [`stream_shutdown()`] are called).
3570 ///
3571 /// * When the application receives data from the peer (for example any
3572 /// time [`stream_recv()`] is called).
3573 ///
3574 /// Once [`is_draining()`] returns `true`, it is no longer necessary to call
3575 /// `send_on_path()` and all calls will return [`Done`].
3576 ///
3577 /// [`Done`]: enum.Error.html#variant.Done
3578 /// [`InvalidState`]: enum.Error.html#InvalidState
3579 /// [`recv()`]: struct.Connection.html#method.recv
3580 /// [`on_timeout()`]: struct.Connection.html#method.on_timeout
3581 /// [`stream_send()`]: struct.Connection.html#method.stream_send
3582 /// [`stream_shutdown()`]: struct.Connection.html#method.stream_shutdown
3583 /// [`stream_recv()`]: struct.Connection.html#method.stream_recv
3584 /// [`path_event_next()`]: struct.Connection.html#method.path_event_next
3585 /// [`paths_iter()`]: struct.Connection.html#method.paths_iter
3586 /// [`is_draining()`]: struct.Connection.html#method.is_draining
3587 ///
3588 /// ## Examples:
3589 ///
3590 /// ```no_run
3591 /// # let mut out = [0; 512];
3592 /// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
3593 /// # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
3594 /// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
3595 /// # let peer = "127.0.0.1:1234".parse().unwrap();
3596 /// # let local = socket.local_addr().unwrap();
3597 /// # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
3598 /// loop {
3599 /// let (write, send_info) = match conn.send_on_path(&mut out, Some(local), Some(peer)) {
3600 /// Ok(v) => v,
3601 ///
3602 /// Err(quiche::Error::Done) => {
3603 /// // Done writing.
3604 /// break;
3605 /// },
3606 ///
3607 /// Err(e) => {
3608 /// // An error occurred, handle it.
3609 /// break;
3610 /// },
3611 /// };
3612 ///
3613 /// socket.send_to(&out[..write], &send_info.to).unwrap();
3614 /// }
3615 /// # Ok::<(), quiche::Error>(())
3616 /// ```
3617 pub fn send_on_path(
3618 &mut self, out: &mut [u8], from: Option<SocketAddr>,
3619 to: Option<SocketAddr>,
3620 ) -> Result<(usize, SendInfo)> {
3621 if out.is_empty() {
3622 return Err(Error::BufferTooShort);
3623 }
3624
3625 if self.is_closed() || self.is_draining() {
3626 return Err(Error::Done);
3627 }
3628
3629 let now = Instant::now();
3630
3631 if self.local_error.is_none() {
3632 self.do_handshake(now)?;
3633 }
3634
3635 // Forwarding the error value here could confuse
3636 // applications, as they may not expect getting a `recv()`
3637 // error when calling `send()`.
3638 //
3639 // We simply fall-through to sending packets, which should
3640 // take care of terminating the connection as needed.
3641 let _ = self.process_undecrypted_0rtt_packets();
3642
3643 // There's no point in trying to send a packet if the Initial secrets
3644 // have not been derived yet, so return early.
3645 if !self.derived_initial_secrets {
3646 return Err(Error::Done);
3647 }
3648
3649 let mut has_initial = false;
3650
3651 let mut done = 0;
3652
3653 // Limit output packet size to respect the sender and receiver's
3654 // maximum UDP payload size limit.
3655 let mut left = cmp::min(out.len(), self.max_send_udp_payload_size());
3656
3657 let send_pid = match (from, to) {
3658 (Some(f), Some(t)) => self
3659 .paths
3660 .path_id_from_addrs(&(f, t))
3661 .ok_or(Error::InvalidState)?,
3662
3663 _ => self.get_send_path_id(from, to)?,
3664 };
3665
3666 let send_path = self.paths.get_mut(send_pid)?;
3667
3668 // Update max datagram size to allow path MTU discovery probe to be sent.
3669 if let Some(pmtud) = send_path.pmtud.as_mut() {
3670 if pmtud.should_probe() {
3671 let size = if self.handshake_confirmed || self.handshake_completed
3672 {
3673 pmtud.get_probe_size()
3674 } else {
3675 pmtud.get_current_mtu()
3676 };
3677
3678 send_path.recovery.pmtud_update_max_datagram_size(size);
3679
3680 left =
3681 cmp::min(out.len(), send_path.recovery.max_datagram_size());
3682 }
3683 }
3684
3685 // Limit data sent by the server based on the amount of data received
3686 // from the client before its address is validated.
3687 if !send_path.verified_peer_address && self.is_server {
3688 left = cmp::min(left, send_path.max_send_bytes);
3689 }
3690
3691 // Generate coalesced packets.
3692 while left > 0 {
3693 let (ty, written) = match self.send_single(
3694 &mut out[done..done + left],
3695 send_pid,
3696 has_initial,
3697 now,
3698 ) {
3699 Ok(v) => v,
3700
3701 Err(Error::BufferTooShort) | Err(Error::Done) => break,
3702
3703 Err(e) => return Err(e),
3704 };
3705
3706 done += written;
3707 left -= written;
3708
3709 match ty {
3710 Type::Initial => has_initial = true,
3711
3712 // No more packets can be coalesced after a 1-RTT.
3713 Type::Short => break,
3714
3715 _ => (),
3716 };
3717
3718 // When sending multiple PTO probes, don't coalesce them together,
3719 // so they are sent on separate UDP datagrams.
3720 if let Ok(epoch) = ty.to_epoch() {
3721 if self.paths.get_mut(send_pid)?.recovery.loss_probes(epoch) > 0 {
3722 break;
3723 }
3724 }
3725
3726 // Don't coalesce packets that must go on different paths.
3727 if !(from.is_some() && to.is_some()) &&
3728 self.get_send_path_id(from, to)? != send_pid
3729 {
3730 break;
3731 }
3732 }
3733
3734 if done == 0 {
3735 self.last_tx_data = self.tx_data;
3736
3737 return Err(Error::Done);
3738 }
3739
3740 if has_initial && left > 0 && done < MIN_CLIENT_INITIAL_LEN {
3741 let pad_len = cmp::min(left, MIN_CLIENT_INITIAL_LEN - done);
3742
3743 // Fill padding area with null bytes, to avoid leaking information
3744 // in case the application reuses the packet buffer.
3745 out[done..done + pad_len].fill(0);
3746
3747 done += pad_len;
3748 }
3749
3750 let send_path = self.paths.get(send_pid)?;
3751
3752 let info = SendInfo {
3753 from: send_path.local_addr(),
3754 to: send_path.peer_addr(),
3755
3756 at: send_path.recovery.get_packet_send_time(now),
3757 };
3758
3759 Ok((done, info))
3760 }
3761
3762 fn send_single(
3763 &mut self, out: &mut [u8], send_pid: usize, has_initial: bool,
3764 now: Instant,
3765 ) -> Result<(Type, usize)> {
3766 if out.is_empty() {
3767 return Err(Error::BufferTooShort);
3768 }
3769
3770 if self.is_draining() {
3771 return Err(Error::Done);
3772 }
3773
3774 let is_closing = self.local_error.is_some();
3775
3776 let out_len = out.len();
3777
3778 let mut b = octets::OctetsMut::with_slice(out);
3779
3780 let pkt_type = self.write_pkt_type(send_pid)?;
3781
3782 let max_dgram_len = if !self.dgram_send_queue.is_empty() {
3783 self.dgram_max_writable_len()
3784 } else {
3785 None
3786 };
3787
3788 let epoch = pkt_type.to_epoch()?;
3789 let pkt_space = &mut self.pkt_num_spaces[epoch];
3790 let crypto_ctx = &mut self.crypto_ctx[epoch];
3791
3792 // Process lost frames. There might be several paths having lost frames.
3793 for (_, p) in self.paths.iter_mut() {
3794 while let Some(lost) = p.recovery.next_lost_frame(epoch) {
3795 match lost {
3796 frame::Frame::CryptoHeader { offset, length } => {
3797 crypto_ctx.crypto_stream.send.retransmit(offset, length);
3798
3799 self.stream_retrans_bytes += length as u64;
3800 p.stream_retrans_bytes += length as u64;
3801
3802 self.retrans_count += 1;
3803 p.retrans_count += 1;
3804 },
3805
3806 frame::Frame::StreamHeader {
3807 stream_id,
3808 offset,
3809 length,
3810 fin,
3811 } => {
3812 let stream = match self.streams.get_mut(stream_id) {
3813 Some(v) => v,
3814
3815 None => {
3816 // Update tx_buffered and qlog. Data on a closed
3817 // stream will not be retransmitted or ACKed after
3818 // it is declared lost.
3819 self.tx_buffered =
3820 self.tx_buffered.saturating_sub(length);
3821
3822 qlog_with_type!(QLOG_DATA_MV, self.qlog, q, {
3823 let ev_data = EventData::DataMoved(
3824 qlog::events::quic::DataMoved {
3825 stream_id: Some(stream_id),
3826 offset: Some(offset),
3827 length: Some(length as u64),
3828 from: Some(DataRecipient::Transport),
3829 to: Some(DataRecipient::Dropped),
3830 ..Default::default()
3831 },
3832 );
3833
3834 q.add_event_data_with_instant(ev_data, now)
3835 .ok();
3836 });
3837
3838 continue;
3839 },
3840 };
3841
3842 let was_flushable = stream.is_flushable();
3843
3844 let empty_fin = length == 0 && fin;
3845
3846 stream.send.retransmit(offset, length);
3847
3848 // If the stream is now flushable push it to the
3849 // flushable queue, but only if it wasn't already
3850 // queued.
3851 //
3852 // Consider the stream flushable also when we are
3853 // sending a zero-length frame that has the fin flag
3854 // set.
3855 if (stream.is_flushable() || empty_fin) && !was_flushable
3856 {
3857 let priority_key = Arc::clone(&stream.priority_key);
3858 self.streams.insert_flushable(&priority_key);
3859 }
3860
3861 self.stream_retrans_bytes += length as u64;
3862 p.stream_retrans_bytes += length as u64;
3863
3864 self.retrans_count += 1;
3865 p.retrans_count += 1;
3866 },
3867
3868 frame::Frame::ACK { .. } => {
3869 pkt_space.ack_elicited = true;
3870 },
3871
3872 frame::Frame::ResetStream {
3873 stream_id,
3874 error_code,
3875 final_size,
3876 } =>
3877 if self.streams.get(stream_id).is_some() {
3878 self.streams
3879 .insert_reset(stream_id, error_code, final_size);
3880 },
3881
3882 // Retransmit HANDSHAKE_DONE only if it hasn't been acked at
3883 // least once already.
3884 frame::Frame::HandshakeDone if !self.handshake_done_acked => {
3885 self.handshake_done_sent = false;
3886 },
3887
3888 frame::Frame::MaxStreamData { stream_id, .. } => {
3889 if self.streams.get(stream_id).is_some() {
3890 self.streams.insert_almost_full(stream_id);
3891 }
3892 },
3893
3894 frame::Frame::MaxData { .. } => {
3895 self.almost_full = true;
3896 },
3897
3898 frame::Frame::NewConnectionId { seq_num, .. } => {
3899 self.ids.mark_advertise_new_scid_seq(seq_num, true);
3900 },
3901
3902 frame::Frame::RetireConnectionId { seq_num } => {
3903 self.ids.mark_retire_dcid_seq(seq_num, true)?;
3904 },
3905
3906 frame::Frame::Ping {
3907 mtu_probe: Some(failed_probe),
3908 } =>
3909 if let Some(pmtud) = p.pmtud.as_mut() {
3910 trace!("pmtud probe dropped: {failed_probe}");
3911 pmtud.failed_probe(failed_probe);
3912 },
3913
3914 _ => (),
3915 }
3916 }
3917 }
3918 self.check_tx_buffered_invariant();
3919
3920 let is_app_limited = self.delivery_rate_check_if_app_limited();
3921 let n_paths = self.paths.len();
3922 let path = self.paths.get_mut(send_pid)?;
3923 let flow_control = &mut self.flow_control;
3924 let pkt_space = &mut self.pkt_num_spaces[epoch];
3925 let crypto_ctx = &mut self.crypto_ctx[epoch];
3926 let pkt_num_manager = &mut self.pkt_num_manager;
3927
3928 let mut left = if let Some(pmtud) = path.pmtud.as_mut() {
3929 // Limit output buffer size by estimated path MTU.
3930 cmp::min(pmtud.get_current_mtu(), b.cap())
3931 } else {
3932 b.cap()
3933 };
3934
3935 if pkt_num_manager.should_skip_pn(self.handshake_completed) {
3936 pkt_num_manager.set_skip_pn(Some(self.next_pkt_num));
3937 self.next_pkt_num += 1;
3938 };
3939 let pn = self.next_pkt_num;
3940
3941 let largest_acked_pkt =
3942 path.recovery.get_largest_acked_on_epoch(epoch).unwrap_or(0);
3943 let pn_len = packet::pkt_num_len(pn, largest_acked_pkt);
3944
3945 // The AEAD overhead at the current encryption level.
3946 let crypto_overhead = crypto_ctx.crypto_overhead().ok_or(Error::Done)?;
3947
3948 let dcid_seq = path.active_dcid_seq.ok_or(Error::OutOfIdentifiers)?;
3949
3950 let dcid =
3951 ConnectionId::from_ref(self.ids.get_dcid(dcid_seq)?.cid.as_ref());
3952
3953 let scid = if let Some(scid_seq) = path.active_scid_seq {
3954 ConnectionId::from_ref(self.ids.get_scid(scid_seq)?.cid.as_ref())
3955 } else if pkt_type == Type::Short {
3956 ConnectionId::default()
3957 } else {
3958 return Err(Error::InvalidState);
3959 };
3960
3961 let hdr = Header {
3962 ty: pkt_type,
3963
3964 version: self.version,
3965
3966 dcid,
3967 scid,
3968
3969 pkt_num: 0,
3970 pkt_num_len: pn_len,
3971
3972 // Only clone token for Initial packets, as other packets don't have
3973 // this field (Retry doesn't count, as it's not encoded as part of
3974 // this code path).
3975 token: if pkt_type == Type::Initial {
3976 self.token.clone()
3977 } else {
3978 None
3979 },
3980
3981 versions: None,
3982 key_phase: self.key_phase,
3983 };
3984
3985 hdr.to_bytes(&mut b)?;
3986
3987 let hdr_trace = if log::max_level() == log::LevelFilter::Trace {
3988 Some(format!("{hdr:?}"))
3989 } else {
3990 None
3991 };
3992
3993 let hdr_ty = hdr.ty;
3994
3995 #[cfg(feature = "qlog")]
3996 let qlog_pkt_hdr = self.qlog.streamer.as_ref().map(|_q| {
3997 qlog::events::quic::PacketHeader::with_type(
3998 hdr.ty.to_qlog(),
3999 Some(pn),
4000 Some(hdr.version),
4001 Some(&hdr.scid),
4002 Some(&hdr.dcid),
4003 )
4004 });
4005
4006 // Calculate the space required for the packet, including the header
4007 // the payload length, the packet number and the AEAD overhead.
4008 let mut overhead = b.off() + pn_len + crypto_overhead;
4009
4010 // We assume that the payload length, which is only present in long
4011 // header packets, can always be encoded with a 2-byte varint.
4012 if pkt_type != Type::Short {
4013 overhead += PAYLOAD_LENGTH_LEN;
4014 }
4015
4016 // Make sure we have enough space left for the packet overhead.
4017 match left.checked_sub(overhead) {
4018 Some(v) => left = v,
4019
4020 None => {
4021 // We can't send more because there isn't enough space available
4022 // in the output buffer.
4023 //
4024 // This usually happens when we try to send a new packet but
4025 // failed because cwnd is almost full. In such case app_limited
4026 // is set to false here to make cwnd grow when ACK is received.
4027 path.recovery.update_app_limited(false);
4028 return Err(Error::Done);
4029 },
4030 }
4031
4032 // Make sure there is enough space for the minimum payload length.
4033 if left < PAYLOAD_MIN_LEN {
4034 path.recovery.update_app_limited(false);
4035 return Err(Error::Done);
4036 }
4037
4038 let mut frames: SmallVec<[frame::Frame; 1]> = SmallVec::new();
4039
4040 let mut ack_eliciting = false;
4041 let mut in_flight = false;
4042 let mut is_pmtud_probe = false;
4043 let mut has_data = false;
4044
4045 // Whether or not we should explicitly elicit an ACK via PING frame if we
4046 // implicitly elicit one otherwise.
4047 let ack_elicit_required = path.recovery.should_elicit_ack(epoch);
4048
4049 let header_offset = b.off();
4050
4051 // Reserve space for payload length in advance. Since we don't yet know
4052 // what the final length will be, we reserve 2 bytes in all cases.
4053 //
4054 // Only long header packets have an explicit length field.
4055 if pkt_type != Type::Short {
4056 b.skip(PAYLOAD_LENGTH_LEN)?;
4057 }
4058
4059 packet::encode_pkt_num(pn, pn_len, &mut b)?;
4060
4061 let payload_offset = b.off();
4062
4063 let cwnd_available =
4064 path.recovery.cwnd_available().saturating_sub(overhead);
4065
4066 let left_before_packing_ack_frame = left;
4067
4068 // Create ACK frame.
4069 //
4070 // When we need to explicitly elicit an ACK via PING later, go ahead and
4071 // generate an ACK (if there's anything to ACK) since we're going to
4072 // send a packet with PING anyways, even if we haven't received anything
4073 // ACK eliciting.
4074 if pkt_space.recv_pkt_need_ack.len() > 0 &&
4075 (pkt_space.ack_elicited || ack_elicit_required) &&
4076 (!is_closing ||
4077 (pkt_type == Type::Handshake &&
4078 self.local_error
4079 .as_ref()
4080 .is_some_and(|le| le.is_app))) &&
4081 path.active()
4082 {
4083 #[cfg(not(feature = "fuzzing"))]
4084 let ack_delay = pkt_space.largest_rx_pkt_time.elapsed();
4085
4086 #[cfg(not(feature = "fuzzing"))]
4087 let ack_delay = ack_delay.as_micros() as u64 /
4088 2_u64
4089 .pow(self.local_transport_params.ack_delay_exponent as u32);
4090
4091 // pseudo-random reproducible ack delays when fuzzing
4092 #[cfg(feature = "fuzzing")]
4093 let ack_delay = rand::rand_u8() as u64 + 1;
4094
4095 let frame = frame::Frame::ACK {
4096 ack_delay,
4097 ranges: pkt_space.recv_pkt_need_ack.clone(),
4098 ecn_counts: None, // sending ECN is not supported at this time
4099 };
4100
4101 // When a PING frame needs to be sent, avoid sending the ACK if
4102 // there is not enough cwnd available for both (note that PING
4103 // frames are always 1 byte, so we just need to check that the
4104 // ACK's length is lower than cwnd).
4105 if pkt_space.ack_elicited || frame.wire_len() < cwnd_available {
4106 // ACK-only packets are not congestion controlled so ACKs must
4107 // be bundled considering the buffer capacity only, and not the
4108 // available cwnd.
4109 if push_frame_to_pkt!(b, frames, frame, left) {
4110 pkt_space.ack_elicited = false;
4111 }
4112 }
4113 }
4114
4115 // Limit output packet size by congestion window size.
4116 left = cmp::min(
4117 left,
4118 // Bytes consumed by ACK frames.
4119 cwnd_available.saturating_sub(left_before_packing_ack_frame - left),
4120 );
4121
4122 let mut challenge_data = None;
4123
4124 let active_path = self.paths.get_active_mut()?;
4125
4126 if pkt_type == Type::Short {
4127 // Create PMTUD probe.
4128 //
4129 // In order to send a PMTUD probe the current `left` value, which was
4130 // already limited by the current PMTU measure, needs to be ignored,
4131 // but the outgoing packet still needs to be limited by
4132 // the output buffer size, as well as the congestion
4133 // window.
4134 //
4135 // In addition, the PMTUD probe is only generated when the handshake
4136 // is confirmed, to avoid interfering with the handshake
4137 // (e.g. due to the anti-amplification limits).
4138 let should_probe_pmtu = active_path.should_send_pmtu_probe(
4139 self.handshake_confirmed,
4140 self.handshake_completed,
4141 out_len,
4142 is_closing,
4143 frames.is_empty(),
4144 );
4145
4146 if should_probe_pmtu {
4147 if let Some(pmtud) = active_path.pmtud.as_mut() {
4148 let probe_size = pmtud.get_probe_size();
4149 trace!(
4150 "{} sending pmtud probe pmtu_probe={} estimated_pmtu={}",
4151 self.trace_id,
4152 probe_size,
4153 pmtud.get_current_mtu(),
4154 );
4155
4156 left = probe_size;
4157
4158 match left.checked_sub(overhead) {
4159 Some(v) => left = v,
4160
4161 None => {
4162 // We can't send more because there isn't enough space
4163 // available in the output buffer.
4164 //
4165 // This usually happens when we try to send a new
4166 // packet but failed
4167 // because cwnd is almost full.
4168 //
4169 // In such case app_limited is set to false here to
4170 // make cwnd grow when ACK
4171 // is received.
4172 active_path.recovery.update_app_limited(false);
4173 return Err(Error::Done);
4174 },
4175 }
4176
4177 let frame = frame::Frame::Padding {
4178 len: probe_size - overhead - 1,
4179 };
4180
4181 if push_frame_to_pkt!(b, frames, frame, left) {
4182 let frame = frame::Frame::Ping {
4183 mtu_probe: Some(probe_size),
4184 };
4185
4186 if push_frame_to_pkt!(b, frames, frame, left) {
4187 ack_eliciting = true;
4188 in_flight = true;
4189 }
4190 }
4191
4192 // Reset probe flag after sending to prevent duplicate probes
4193 // in a single flight.
4194 pmtud.set_in_flight(true);
4195 is_pmtud_probe = true;
4196 }
4197 }
4198
4199 let path = self.paths.get_mut(send_pid)?;
4200 // Create PATH_RESPONSE frame if needed.
4201 // We do not try to ensure that these are really sent.
4202 while let Some(challenge) = path.pop_received_challenge() {
4203 let frame = frame::Frame::PathResponse { data: challenge };
4204
4205 if push_frame_to_pkt!(b, frames, frame, left) {
4206 ack_eliciting = true;
4207 in_flight = true;
4208 } else {
4209 // If there are other pending PATH_RESPONSE, don't lose them
4210 // now.
4211 break;
4212 }
4213 }
4214
4215 // Create PATH_CHALLENGE frame if needed.
4216 if path.validation_requested() {
4217 // TODO: ensure that data is unique over paths.
4218 let data = rand::rand_u64().to_be_bytes();
4219
4220 let frame = frame::Frame::PathChallenge { data };
4221
4222 if push_frame_to_pkt!(b, frames, frame, left) {
4223 // Let's notify the path once we know the packet size.
4224 challenge_data = Some(data);
4225
4226 ack_eliciting = true;
4227 in_flight = true;
4228 }
4229 }
4230
4231 if let Some(key_update) = crypto_ctx.key_update.as_mut() {
4232 key_update.update_acked = true;
4233 }
4234 }
4235
4236 let path = self.paths.get_mut(send_pid)?;
4237
4238 if pkt_type == Type::Short && !is_closing {
4239 // Create NEW_CONNECTION_ID frames as needed.
4240 while let Some(seq_num) = self.ids.next_advertise_new_scid_seq() {
4241 let frame = self.ids.get_new_connection_id_frame_for(seq_num)?;
4242
4243 if push_frame_to_pkt!(b, frames, frame, left) {
4244 self.ids.mark_advertise_new_scid_seq(seq_num, false);
4245
4246 ack_eliciting = true;
4247 in_flight = true;
4248 } else {
4249 break;
4250 }
4251 }
4252 }
4253
4254 if pkt_type == Type::Short && !is_closing && path.active() {
4255 // Create HANDSHAKE_DONE frame.
4256 // self.should_send_handshake_done() but without the need to borrow
4257 if self.handshake_completed &&
4258 !self.handshake_done_sent &&
4259 self.is_server
4260 {
4261 let frame = frame::Frame::HandshakeDone;
4262
4263 if push_frame_to_pkt!(b, frames, frame, left) {
4264 self.handshake_done_sent = true;
4265
4266 ack_eliciting = true;
4267 in_flight = true;
4268 }
4269 }
4270
4271 // Create MAX_STREAMS_BIDI frame.
4272 if self.streams.should_update_max_streams_bidi() {
4273 let frame = frame::Frame::MaxStreamsBidi {
4274 max: self.streams.max_streams_bidi_next(),
4275 };
4276
4277 if push_frame_to_pkt!(b, frames, frame, left) {
4278 self.streams.update_max_streams_bidi();
4279
4280 ack_eliciting = true;
4281 in_flight = true;
4282 }
4283 }
4284
4285 // Create MAX_STREAMS_UNI frame.
4286 if self.streams.should_update_max_streams_uni() {
4287 let frame = frame::Frame::MaxStreamsUni {
4288 max: self.streams.max_streams_uni_next(),
4289 };
4290
4291 if push_frame_to_pkt!(b, frames, frame, left) {
4292 self.streams.update_max_streams_uni();
4293
4294 ack_eliciting = true;
4295 in_flight = true;
4296 }
4297 }
4298
4299 // Create DATA_BLOCKED frame.
4300 if let Some(limit) = self.blocked_limit {
4301 let frame = frame::Frame::DataBlocked { limit };
4302
4303 if push_frame_to_pkt!(b, frames, frame, left) {
4304 self.blocked_limit = None;
4305 self.data_blocked_sent_count =
4306 self.data_blocked_sent_count.saturating_add(1);
4307
4308 ack_eliciting = true;
4309 in_flight = true;
4310 }
4311 }
4312
4313 // Create MAX_STREAM_DATA frames as needed.
4314 for stream_id in self.streams.almost_full() {
4315 let stream = match self.streams.get_mut(stream_id) {
4316 Some(v) => v,
4317
4318 None => {
4319 // The stream doesn't exist anymore, so remove it from
4320 // the almost full set.
4321 self.streams.remove_almost_full(stream_id);
4322 continue;
4323 },
4324 };
4325
4326 // Autotune the stream window size.
4327 stream.recv.autotune_window(now, path.recovery.rtt());
4328
4329 let frame = frame::Frame::MaxStreamData {
4330 stream_id,
4331 max: stream.recv.max_data_next(),
4332 };
4333
4334 if push_frame_to_pkt!(b, frames, frame, left) {
4335 let recv_win = stream.recv.window();
4336
4337 stream.recv.update_max_data(now);
4338
4339 self.streams.remove_almost_full(stream_id);
4340
4341 ack_eliciting = true;
4342 in_flight = true;
4343
4344 // Make sure the connection window always has some
4345 // room compared to the stream window.
4346 flow_control.ensure_window_lower_bound(
4347 (recv_win as f64 * CONNECTION_WINDOW_FACTOR) as u64,
4348 );
4349
4350 // Also send MAX_DATA when MAX_STREAM_DATA is sent, to avoid a
4351 // potential race condition.
4352 self.almost_full = true;
4353 }
4354 }
4355
4356 // Create MAX_DATA frame as needed.
4357 if self.almost_full &&
4358 flow_control.max_data() < flow_control.max_data_next()
4359 {
4360 // Autotune the connection window size.
4361 flow_control.autotune_window(now, path.recovery.rtt());
4362
4363 let frame = frame::Frame::MaxData {
4364 max: flow_control.max_data_next(),
4365 };
4366
4367 if push_frame_to_pkt!(b, frames, frame, left) {
4368 self.almost_full = false;
4369
4370 // Commits the new max_rx_data limit.
4371 flow_control.update_max_data(now);
4372
4373 ack_eliciting = true;
4374 in_flight = true;
4375 }
4376 }
4377
4378 // Create STOP_SENDING frames as needed.
4379 for (stream_id, error_code) in self
4380 .streams
4381 .stopped()
4382 .map(|(&k, &v)| (k, v))
4383 .collect::<Vec<(u64, u64)>>()
4384 {
4385 let frame = frame::Frame::StopSending {
4386 stream_id,
4387 error_code,
4388 };
4389
4390 if push_frame_to_pkt!(b, frames, frame, left) {
4391 self.streams.remove_stopped(stream_id);
4392
4393 ack_eliciting = true;
4394 in_flight = true;
4395 }
4396 }
4397
4398 // Create RESET_STREAM frames as needed.
4399 for (stream_id, (error_code, final_size)) in self
4400 .streams
4401 .reset()
4402 .map(|(&k, &v)| (k, v))
4403 .collect::<Vec<(u64, (u64, u64))>>()
4404 {
4405 let frame = frame::Frame::ResetStream {
4406 stream_id,
4407 error_code,
4408 final_size,
4409 };
4410
4411 if push_frame_to_pkt!(b, frames, frame, left) {
4412 self.streams.remove_reset(stream_id);
4413
4414 ack_eliciting = true;
4415 in_flight = true;
4416 }
4417 }
4418
4419 // Create STREAM_DATA_BLOCKED frames as needed.
4420 for (stream_id, limit) in self
4421 .streams
4422 .blocked()
4423 .map(|(&k, &v)| (k, v))
4424 .collect::<Vec<(u64, u64)>>()
4425 {
4426 let frame = frame::Frame::StreamDataBlocked { stream_id, limit };
4427
4428 if push_frame_to_pkt!(b, frames, frame, left) {
4429 self.streams.remove_blocked(stream_id);
4430 self.stream_data_blocked_sent_count =
4431 self.stream_data_blocked_sent_count.saturating_add(1);
4432
4433 ack_eliciting = true;
4434 in_flight = true;
4435 }
4436 }
4437
4438 // Create RETIRE_CONNECTION_ID frames as needed.
4439 let retire_dcid_seqs = self.ids.retire_dcid_seqs();
4440
4441 for seq_num in retire_dcid_seqs {
4442 // The sequence number specified in a RETIRE_CONNECTION_ID frame
4443 // MUST NOT refer to the Destination Connection ID field of the
4444 // packet in which the frame is contained.
4445 let dcid_seq = path.active_dcid_seq.ok_or(Error::InvalidState)?;
4446
4447 if seq_num == dcid_seq {
4448 continue;
4449 }
4450
4451 let frame = frame::Frame::RetireConnectionId { seq_num };
4452
4453 if push_frame_to_pkt!(b, frames, frame, left) {
4454 self.ids.mark_retire_dcid_seq(seq_num, false)?;
4455
4456 ack_eliciting = true;
4457 in_flight = true;
4458 } else {
4459 break;
4460 }
4461 }
4462 }
4463
4464 // Create CONNECTION_CLOSE frame. Try to send this only on the active
4465 // path, unless it is the last one available.
4466 if path.active() || n_paths == 1 {
4467 if let Some(conn_err) = self.local_error.as_ref() {
4468 if conn_err.is_app {
4469 // Create ApplicationClose frame.
4470 if pkt_type == Type::Short {
4471 let frame = frame::Frame::ApplicationClose {
4472 error_code: conn_err.error_code,
4473 reason: conn_err.reason.clone(),
4474 };
4475
4476 if push_frame_to_pkt!(b, frames, frame, left) {
4477 let pto = path.recovery.pto();
4478 self.draining_timer = Some(now + (pto * 3));
4479
4480 ack_eliciting = true;
4481 in_flight = true;
4482 }
4483 }
4484 } else {
4485 // Create ConnectionClose frame.
4486 let frame = frame::Frame::ConnectionClose {
4487 error_code: conn_err.error_code,
4488 frame_type: 0,
4489 reason: conn_err.reason.clone(),
4490 };
4491
4492 if push_frame_to_pkt!(b, frames, frame, left) {
4493 let pto = path.recovery.pto();
4494 self.draining_timer = Some(now + (pto * 3));
4495
4496 ack_eliciting = true;
4497 in_flight = true;
4498 }
4499 }
4500 }
4501 }
4502
4503 // Create CRYPTO frame.
4504 if crypto_ctx.crypto_stream.is_flushable() &&
4505 left > frame::MAX_CRYPTO_OVERHEAD &&
4506 !is_closing &&
4507 path.active()
4508 {
4509 let crypto_off = crypto_ctx.crypto_stream.send.off_front();
4510
4511 // Encode the frame.
4512 //
4513 // Instead of creating a `frame::Frame` object, encode the frame
4514 // directly into the packet buffer.
4515 //
4516 // First we reserve some space in the output buffer for writing the
4517 // frame header (we assume the length field is always a 2-byte
4518 // varint as we don't know the value yet).
4519 //
4520 // Then we emit the data from the crypto stream's send buffer.
4521 //
4522 // Finally we go back and encode the frame header with the now
4523 // available information.
4524 let hdr_off = b.off();
4525 let hdr_len = 1 + // frame type
4526 octets::varint_len(crypto_off) + // offset
4527 2; // length, always encode as 2-byte varint
4528
4529 if let Some(max_len) = left.checked_sub(hdr_len) {
4530 let (mut crypto_hdr, mut crypto_payload) =
4531 b.split_at(hdr_off + hdr_len)?;
4532
4533 // Write stream data into the packet buffer.
4534 let (len, _) = crypto_ctx
4535 .crypto_stream
4536 .send
4537 .emit(&mut crypto_payload.as_mut()[..max_len])?;
4538
4539 // Encode the frame's header.
4540 //
4541 // Due to how `OctetsMut::split_at()` works, `crypto_hdr` starts
4542 // from the initial offset of `b` (rather than the current
4543 // offset), so it needs to be advanced to the
4544 // initial frame offset.
4545 crypto_hdr.skip(hdr_off)?;
4546
4547 frame::encode_crypto_header(
4548 crypto_off,
4549 len as u64,
4550 &mut crypto_hdr,
4551 )?;
4552
4553 // Advance the packet buffer's offset.
4554 b.skip(hdr_len + len)?;
4555
4556 let frame = frame::Frame::CryptoHeader {
4557 offset: crypto_off,
4558 length: len,
4559 };
4560
4561 if push_frame_to_pkt!(b, frames, frame, left) {
4562 ack_eliciting = true;
4563 in_flight = true;
4564 has_data = true;
4565 }
4566 }
4567 }
4568
4569 // The preference of data-bearing frame to include in a packet
4570 // is managed by `self.emit_dgram`. However, whether any frames
4571 // can be sent depends on the state of their buffers. In the case
4572 // where one type is preferred but its buffer is empty, fall back
4573 // to the other type in order not to waste this function call.
4574 let mut dgram_emitted = false;
4575 let dgrams_to_emit = max_dgram_len.is_some();
4576 let stream_to_emit = self.streams.has_flushable();
4577
4578 let mut do_dgram = self.emit_dgram && dgrams_to_emit;
4579 let do_stream = !self.emit_dgram && stream_to_emit;
4580
4581 if !do_stream && dgrams_to_emit {
4582 do_dgram = true;
4583 }
4584
4585 // Create DATAGRAM frame.
4586 if (pkt_type == Type::Short || pkt_type == Type::ZeroRTT) &&
4587 left > frame::MAX_DGRAM_OVERHEAD &&
4588 !is_closing &&
4589 path.active() &&
4590 do_dgram
4591 {
4592 if let Some(max_dgram_payload) = max_dgram_len {
4593 while let Some(len) = self.dgram_send_queue.peek_front_len() {
4594 let hdr_off = b.off();
4595 let hdr_len = 1 + // frame type
4596 2; // length, always encode as 2-byte varint
4597
4598 if (hdr_len + len) <= left {
4599 // Front of the queue fits this packet, send it.
4600 match self.dgram_send_queue.pop() {
4601 Some(data) => {
4602 // Encode the frame.
4603 //
4604 // Instead of creating a `frame::Frame` object,
4605 // encode the frame directly into the packet
4606 // buffer.
4607 //
4608 // First we reserve some space in the output
4609 // buffer for writing the frame header (we
4610 // assume the length field is always a 2-byte
4611 // varint as we don't know the value yet).
4612 //
4613 // Then we emit the data from the DATAGRAM's
4614 // buffer.
4615 //
4616 // Finally we go back and encode the frame
4617 // header with the now available information.
4618 let (mut dgram_hdr, mut dgram_payload) =
4619 b.split_at(hdr_off + hdr_len)?;
4620
4621 dgram_payload.as_mut()[..len]
4622 .copy_from_slice(&data);
4623
4624 // Encode the frame's header.
4625 //
4626 // Due to how `OctetsMut::split_at()` works,
4627 // `dgram_hdr` starts from the initial offset
4628 // of `b` (rather than the current offset), so
4629 // it needs to be advanced to the initial frame
4630 // offset.
4631 dgram_hdr.skip(hdr_off)?;
4632
4633 frame::encode_dgram_header(
4634 len as u64,
4635 &mut dgram_hdr,
4636 )?;
4637
4638 // Advance the packet buffer's offset.
4639 b.skip(hdr_len + len)?;
4640
4641 let frame =
4642 frame::Frame::DatagramHeader { length: len };
4643
4644 if push_frame_to_pkt!(b, frames, frame, left) {
4645 ack_eliciting = true;
4646 in_flight = true;
4647 dgram_emitted = true;
4648 self.dgram_sent_count =
4649 self.dgram_sent_count.saturating_add(1);
4650 path.dgram_sent_count =
4651 path.dgram_sent_count.saturating_add(1);
4652 }
4653 },
4654
4655 None => continue,
4656 };
4657 } else if len > max_dgram_payload {
4658 // This dgram frame will never fit. Let's purge it.
4659 self.dgram_send_queue.pop();
4660 } else {
4661 break;
4662 }
4663 }
4664 }
4665 }
4666
4667 // Create a single STREAM frame for the first stream that is flushable.
4668 if (pkt_type == Type::Short || pkt_type == Type::ZeroRTT) &&
4669 left > frame::MAX_STREAM_OVERHEAD &&
4670 !is_closing &&
4671 path.active() &&
4672 !dgram_emitted
4673 {
4674 while let Some(priority_key) = self.streams.peek_flushable() {
4675 let stream_id = priority_key.id;
4676 let stream = match self.streams.get_mut(stream_id) {
4677 // Avoid sending frames for streams that were already stopped.
4678 //
4679 // This might happen if stream data was buffered but not yet
4680 // flushed on the wire when a STOP_SENDING frame is received.
4681 Some(v) if !v.send.is_stopped() => v,
4682 _ => {
4683 self.streams.remove_flushable(&priority_key);
4684 continue;
4685 },
4686 };
4687
4688 let stream_off = stream.send.off_front();
4689
4690 // Encode the frame.
4691 //
4692 // Instead of creating a `frame::Frame` object, encode the frame
4693 // directly into the packet buffer.
4694 //
4695 // First we reserve some space in the output buffer for writing
4696 // the frame header (we assume the length field is always a
4697 // 2-byte varint as we don't know the value yet).
4698 //
4699 // Then we emit the data from the stream's send buffer.
4700 //
4701 // Finally we go back and encode the frame header with the now
4702 // available information.
4703 let hdr_off = b.off();
4704 let hdr_len = 1 + // frame type
4705 octets::varint_len(stream_id) + // stream_id
4706 octets::varint_len(stream_off) + // offset
4707 2; // length, always encode as 2-byte varint
4708
4709 let max_len = match left.checked_sub(hdr_len) {
4710 Some(v) => v,
4711 None => {
4712 let priority_key = Arc::clone(&stream.priority_key);
4713 self.streams.remove_flushable(&priority_key);
4714
4715 continue;
4716 },
4717 };
4718
4719 let (mut stream_hdr, mut stream_payload) =
4720 b.split_at(hdr_off + hdr_len)?;
4721
4722 // Write stream data into the packet buffer.
4723 let (len, fin) =
4724 stream.send.emit(&mut stream_payload.as_mut()[..max_len])?;
4725
4726 // Encode the frame's header.
4727 //
4728 // Due to how `OctetsMut::split_at()` works, `stream_hdr` starts
4729 // from the initial offset of `b` (rather than the current
4730 // offset), so it needs to be advanced to the initial frame
4731 // offset.
4732 stream_hdr.skip(hdr_off)?;
4733
4734 frame::encode_stream_header(
4735 stream_id,
4736 stream_off,
4737 len as u64,
4738 fin,
4739 &mut stream_hdr,
4740 )?;
4741
4742 // Advance the packet buffer's offset.
4743 b.skip(hdr_len + len)?;
4744
4745 let frame = frame::Frame::StreamHeader {
4746 stream_id,
4747 offset: stream_off,
4748 length: len,
4749 fin,
4750 };
4751
4752 if push_frame_to_pkt!(b, frames, frame, left) {
4753 ack_eliciting = true;
4754 in_flight = true;
4755 has_data = true;
4756 }
4757
4758 let priority_key = Arc::clone(&stream.priority_key);
4759 // If the stream is no longer flushable, remove it from the queue
4760 if !stream.is_flushable() {
4761 self.streams.remove_flushable(&priority_key);
4762 } else if stream.incremental {
4763 // Shuffle the incremental stream to the back of the
4764 // queue.
4765 self.streams.remove_flushable(&priority_key);
4766 self.streams.insert_flushable(&priority_key);
4767 }
4768
4769 #[cfg(feature = "fuzzing")]
4770 // Coalesce STREAM frames when fuzzing.
4771 if left > frame::MAX_STREAM_OVERHEAD {
4772 continue;
4773 }
4774
4775 break;
4776 }
4777 }
4778
4779 // Alternate trying to send DATAGRAMs next time.
4780 self.emit_dgram = !dgram_emitted;
4781
4782 // If no other ack-eliciting frame is sent, include a PING frame
4783 // - if PTO probe needed; OR
4784 // - if we've sent too many non ack-eliciting packets without having
4785 // sent an ACK eliciting one; OR
4786 // - the application requested an ack-eliciting frame be sent.
4787 if (ack_elicit_required || path.needs_ack_eliciting) &&
4788 !ack_eliciting &&
4789 left >= 1 &&
4790 !is_closing
4791 {
4792 let frame = frame::Frame::Ping { mtu_probe: None };
4793
4794 if push_frame_to_pkt!(b, frames, frame, left) {
4795 ack_eliciting = true;
4796 in_flight = true;
4797 }
4798 }
4799
4800 if ack_eliciting && !is_pmtud_probe {
4801 path.needs_ack_eliciting = false;
4802 path.recovery.ping_sent(epoch);
4803 }
4804
4805 if !has_data &&
4806 !dgram_emitted &&
4807 cwnd_available > frame::MAX_STREAM_OVERHEAD
4808 {
4809 path.recovery.on_app_limited();
4810 }
4811
4812 if frames.is_empty() {
4813 // When we reach this point we are not able to write more, so set
4814 // app_limited to false.
4815 path.recovery.update_app_limited(false);
4816 return Err(Error::Done);
4817 }
4818
4819 // When coalescing a 1-RTT packet, we can't add padding in the UDP
4820 // datagram, so use PADDING frames instead.
4821 //
4822 // This is only needed if
4823 // 1) an Initial packet has already been written to the UDP datagram,
4824 // as Initial always requires padding.
4825 //
4826 // 2) this is a probing packet towards an unvalidated peer address.
4827 if (has_initial || !path.validated()) &&
4828 pkt_type == Type::Short &&
4829 left >= 1
4830 {
4831 let frame = frame::Frame::Padding { len: left };
4832
4833 if push_frame_to_pkt!(b, frames, frame, left) {
4834 in_flight = true;
4835 }
4836 }
4837
4838 // Pad payload so that it's always at least 4 bytes.
4839 if b.off() - payload_offset < PAYLOAD_MIN_LEN {
4840 let payload_len = b.off() - payload_offset;
4841
4842 let frame = frame::Frame::Padding {
4843 len: PAYLOAD_MIN_LEN - payload_len,
4844 };
4845
4846 #[allow(unused_assignments)]
4847 if push_frame_to_pkt!(b, frames, frame, left) {
4848 in_flight = true;
4849 }
4850 }
4851
4852 let payload_len = b.off() - payload_offset;
4853
4854 // Fill in payload length.
4855 if pkt_type != Type::Short {
4856 let len = pn_len + payload_len + crypto_overhead;
4857
4858 let (_, mut payload_with_len) = b.split_at(header_offset)?;
4859 payload_with_len
4860 .put_varint_with_len(len as u64, PAYLOAD_LENGTH_LEN)?;
4861 }
4862
4863 trace!(
4864 "{} tx pkt {} len={} pn={} {}",
4865 self.trace_id,
4866 hdr_trace.unwrap_or_default(),
4867 payload_len,
4868 pn,
4869 AddrTupleFmt(path.local_addr(), path.peer_addr())
4870 );
4871
4872 #[cfg(feature = "qlog")]
4873 let mut qlog_frames: SmallVec<
4874 [qlog::events::quic::QuicFrame; 1],
4875 > = SmallVec::with_capacity(frames.len());
4876
4877 for frame in &mut frames {
4878 trace!("{} tx frm {:?}", self.trace_id, frame);
4879
4880 qlog_with_type!(QLOG_PACKET_TX, self.qlog, _q, {
4881 qlog_frames.push(frame.to_qlog());
4882 });
4883 }
4884
4885 qlog_with_type!(QLOG_PACKET_TX, self.qlog, q, {
4886 if let Some(header) = qlog_pkt_hdr {
4887 // Qlog packet raw info described at
4888 // https://datatracker.ietf.org/doc/html/draft-ietf-quic-qlog-main-schema-00#section-5.1
4889 //
4890 // `length` includes packet headers and trailers (AEAD tag).
4891 let length = payload_len + payload_offset + crypto_overhead;
4892 let qlog_raw_info = RawInfo {
4893 length: Some(length as u64),
4894 payload_length: Some(payload_len as u64),
4895 data: None,
4896 };
4897
4898 let send_at_time =
4899 now.duration_since(q.start_time()).as_secs_f32() * 1000.0;
4900
4901 let ev_data =
4902 EventData::PacketSent(qlog::events::quic::PacketSent {
4903 header,
4904 frames: Some(qlog_frames),
4905 raw: Some(qlog_raw_info),
4906 send_at_time: Some(send_at_time),
4907 ..Default::default()
4908 });
4909
4910 q.add_event_data_with_instant(ev_data, now).ok();
4911 }
4912 });
4913
4914 let aead = match crypto_ctx.crypto_seal {
4915 Some(ref v) => v,
4916 None => return Err(Error::InvalidState),
4917 };
4918
4919 let written = packet::encrypt_pkt(
4920 &mut b,
4921 pn,
4922 pn_len,
4923 payload_len,
4924 payload_offset,
4925 None,
4926 aead,
4927 )?;
4928
4929 let sent_pkt_has_data = if path.recovery.gcongestion_enabled() {
4930 has_data || dgram_emitted
4931 } else {
4932 has_data
4933 };
4934
4935 let sent_pkt = recovery::Sent {
4936 pkt_num: pn,
4937 frames,
4938 time_sent: now,
4939 time_acked: None,
4940 time_lost: None,
4941 size: if ack_eliciting { written } else { 0 },
4942 ack_eliciting,
4943 in_flight,
4944 delivered: 0,
4945 delivered_time: now,
4946 first_sent_time: now,
4947 is_app_limited: false,
4948 tx_in_flight: 0,
4949 lost: 0,
4950 has_data: sent_pkt_has_data,
4951 is_pmtud_probe,
4952 };
4953
4954 if in_flight && is_app_limited {
4955 path.recovery.delivery_rate_update_app_limited(true);
4956 }
4957
4958 self.next_pkt_num += 1;
4959
4960 let handshake_status = recovery::HandshakeStatus {
4961 has_handshake_keys: self.crypto_ctx[packet::Epoch::Handshake]
4962 .has_keys(),
4963 peer_verified_address: self.peer_verified_initial_address,
4964 completed: self.handshake_completed,
4965 };
4966
4967 self.on_packet_sent(send_pid, sent_pkt, epoch, handshake_status, now)?;
4968
4969 let path = self.paths.get_mut(send_pid)?;
4970 qlog_with_type!(QLOG_METRICS, self.qlog, q, {
4971 path.recovery.maybe_qlog(q, now);
4972 });
4973
4974 // Record sent packet size if we probe the path.
4975 if let Some(data) = challenge_data {
4976 path.add_challenge_sent(data, written, now);
4977 }
4978
4979 self.sent_count += 1;
4980 self.sent_bytes += written as u64;
4981 path.sent_count += 1;
4982 path.sent_bytes += written as u64;
4983
4984 if self.dgram_send_queue.byte_size() > path.recovery.cwnd_available() {
4985 path.recovery.update_app_limited(false);
4986 }
4987
4988 path.max_send_bytes = path.max_send_bytes.saturating_sub(written);
4989
4990 // On the client, drop initial state after sending an Handshake packet.
4991 if !self.is_server && hdr_ty == Type::Handshake {
4992 self.drop_epoch_state(packet::Epoch::Initial, now);
4993 }
4994
4995 // (Re)start the idle timer if we are sending the first ack-eliciting
4996 // packet since last receiving a packet.
4997 if ack_eliciting && !self.ack_eliciting_sent {
4998 if let Some(idle_timeout) = self.idle_timeout() {
4999 self.idle_timer = Some(now + idle_timeout);
5000 }
5001 }
5002
5003 if ack_eliciting {
5004 self.ack_eliciting_sent = true;
5005 }
5006
5007 Ok((pkt_type, written))
5008 }
5009
5010 fn on_packet_sent(
5011 &mut self, send_pid: usize, sent_pkt: recovery::Sent,
5012 epoch: packet::Epoch, handshake_status: recovery::HandshakeStatus,
5013 now: Instant,
5014 ) -> Result<()> {
5015 let path = self.paths.get_mut(send_pid)?;
5016
5017 // It's fine to set the skip counter based on a non-active path's values.
5018 let cwnd = path.recovery.cwnd();
5019 let max_datagram_size = path.recovery.max_datagram_size();
5020 self.pkt_num_spaces[epoch].on_packet_sent(&sent_pkt);
5021 self.pkt_num_manager.on_packet_sent(
5022 cwnd,
5023 max_datagram_size,
5024 self.handshake_completed,
5025 );
5026
5027 path.recovery.on_packet_sent(
5028 sent_pkt,
5029 epoch,
5030 handshake_status,
5031 now,
5032 &self.trace_id,
5033 );
5034
5035 Ok(())
5036 }
5037
5038 /// Returns the desired send time for the next packet.
5039 #[inline]
5040 pub fn get_next_release_time(&self) -> Option<ReleaseDecision> {
5041 Some(
5042 self.paths
5043 .get_active()
5044 .ok()?
5045 .recovery
5046 .get_next_release_time(),
5047 )
5048 }
5049
5050 /// Returns whether gcongestion is enabled.
5051 #[inline]
5052 pub fn gcongestion_enabled(&self) -> Option<bool> {
5053 Some(self.paths.get_active().ok()?.recovery.gcongestion_enabled())
5054 }
5055
5056 /// Returns the maximum pacing into the future.
5057 ///
5058 /// Equals 1/8 of the smoothed RTT, but at least 1ms and not greater than
5059 /// 5ms.
5060 pub fn max_release_into_future(&self) -> Duration {
5061 self.paths
5062 .get_active()
5063 .map(|p| p.recovery.rtt().mul_f64(0.125))
5064 .unwrap_or(Duration::from_millis(1))
5065 .max(Duration::from_millis(1))
5066 .min(Duration::from_millis(5))
5067 }
5068
5069 /// Returns whether pacing is enabled.
5070 #[inline]
5071 pub fn pacing_enabled(&self) -> bool {
5072 self.recovery_config.pacing
5073 }
5074
5075 /// Returns the size of the send quantum, in bytes.
5076 ///
5077 /// This represents the maximum size of a packet burst as determined by the
5078 /// congestion control algorithm in use.
5079 ///
5080 /// Applications can, for example, use it in conjunction with segmentation
5081 /// offloading mechanisms as the maximum limit for outgoing aggregates of
5082 /// multiple packets.
5083 #[inline]
5084 pub fn send_quantum(&self) -> usize {
5085 match self.paths.get_active() {
5086 Ok(p) => p.recovery.send_quantum(),
5087 _ => 0,
5088 }
5089 }
5090
5091 /// Returns the size of the send quantum over the given 4-tuple, in bytes.
5092 ///
5093 /// This represents the maximum size of a packet burst as determined by the
5094 /// congestion control algorithm in use.
5095 ///
5096 /// Applications can, for example, use it in conjunction with segmentation
5097 /// offloading mechanisms as the maximum limit for outgoing aggregates of
5098 /// multiple packets.
5099 ///
5100 /// If the (`local_addr`, peer_addr`) 4-tuple relates to a non-existing
5101 /// path, this method returns 0.
5102 pub fn send_quantum_on_path(
5103 &self, local_addr: SocketAddr, peer_addr: SocketAddr,
5104 ) -> usize {
5105 self.paths
5106 .path_id_from_addrs(&(local_addr, peer_addr))
5107 .and_then(|pid| self.paths.get(pid).ok())
5108 .map(|path| path.recovery.send_quantum())
5109 .unwrap_or(0)
5110 }
5111
5112 /// Reads contiguous data from a stream into the provided slice.
5113 ///
5114 /// The slice must be sized by the caller and will be populated up to its
5115 /// capacity.
5116 ///
5117 /// On success the amount of bytes read and a flag indicating the fin state
5118 /// is returned as a tuple, or [`Done`] if there is no data to read.
5119 ///
5120 /// Reading data from a stream may trigger queueing of control messages
5121 /// (e.g. MAX_STREAM_DATA). [`send()`] should be called after reading.
5122 ///
5123 /// [`Done`]: enum.Error.html#variant.Done
5124 /// [`send()`]: struct.Connection.html#method.send
5125 ///
5126 /// ## Examples:
5127 ///
5128 /// ```no_run
5129 /// # let mut buf = [0; 512];
5130 /// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
5131 /// # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
5132 /// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
5133 /// # let peer = "127.0.0.1:1234".parse().unwrap();
5134 /// # let local = socket.local_addr().unwrap();
5135 /// # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
5136 /// # let stream_id = 0;
5137 /// while let Ok((read, fin)) = conn.stream_recv(stream_id, &mut buf) {
5138 /// println!("Got {} bytes on stream {}", read, stream_id);
5139 /// }
5140 /// # Ok::<(), quiche::Error>(())
5141 /// ```
5142 pub fn stream_recv(
5143 &mut self, stream_id: u64, out: &mut [u8],
5144 ) -> Result<(usize, bool)> {
5145 // We can't read on our own unidirectional streams.
5146 if !stream::is_bidi(stream_id) &&
5147 stream::is_local(stream_id, self.is_server)
5148 {
5149 return Err(Error::InvalidStreamState(stream_id));
5150 }
5151
5152 let stream = self
5153 .streams
5154 .get_mut(stream_id)
5155 .ok_or(Error::InvalidStreamState(stream_id))?;
5156
5157 if !stream.is_readable() {
5158 return Err(Error::Done);
5159 }
5160
5161 let local = stream.local;
5162 let priority_key = Arc::clone(&stream.priority_key);
5163
5164 #[cfg(feature = "qlog")]
5165 let offset = stream.recv.off_front();
5166
5167 let (read, fin) = match stream.recv.emit(out) {
5168 Ok(v) => v,
5169
5170 Err(e) => {
5171 // Collect the stream if it is now complete. This can happen if
5172 // we got a `StreamReset` error which will now be propagated to
5173 // the application, so we don't need to keep the stream's state
5174 // anymore.
5175 if stream.is_complete() {
5176 self.streams.collect(stream_id, local);
5177 }
5178
5179 self.streams.remove_readable(&priority_key);
5180 return Err(e);
5181 },
5182 };
5183
5184 self.flow_control.add_consumed(read as u64);
5185
5186 let readable = stream.is_readable();
5187
5188 let complete = stream.is_complete();
5189
5190 if stream.recv.almost_full() {
5191 self.streams.insert_almost_full(stream_id);
5192 }
5193
5194 if !readable {
5195 self.streams.remove_readable(&priority_key);
5196 }
5197
5198 if complete {
5199 self.streams.collect(stream_id, local);
5200 }
5201
5202 qlog_with_type!(QLOG_DATA_MV, self.qlog, q, {
5203 let ev_data = EventData::DataMoved(qlog::events::quic::DataMoved {
5204 stream_id: Some(stream_id),
5205 offset: Some(offset),
5206 length: Some(read as u64),
5207 from: Some(DataRecipient::Transport),
5208 to: Some(DataRecipient::Application),
5209 ..Default::default()
5210 });
5211
5212 let now = Instant::now();
5213 q.add_event_data_with_instant(ev_data, now).ok();
5214 });
5215
5216 if self.should_update_max_data() {
5217 self.almost_full = true;
5218 }
5219
5220 if priority_key.incremental && readable {
5221 // Shuffle the incremental stream to the back of the queue.
5222 self.streams.remove_readable(&priority_key);
5223 self.streams.insert_readable(&priority_key);
5224 }
5225
5226 Ok((read, fin))
5227 }
5228
5229 /// Writes data to a stream.
5230 ///
5231 /// On success the number of bytes written is returned, or [`Done`] if no
5232 /// data was written (e.g. because the stream has no capacity).
5233 ///
5234 /// Applications can provide a 0-length buffer with the fin flag set to
5235 /// true. This will lead to a 0-length FIN STREAM frame being sent at the
5236 /// latest offset. The `Ok(0)` value is only returned when the application
5237 /// provided a 0-length buffer.
5238 ///
5239 /// In addition, if the peer has signalled that it doesn't want to receive
5240 /// any more data from this stream by sending the `STOP_SENDING` frame, the
5241 /// [`StreamStopped`] error will be returned instead of any data.
5242 ///
5243 /// Note that in order to avoid buffering an infinite amount of data in the
5244 /// stream's send buffer, streams are only allowed to buffer outgoing data
5245 /// up to the amount that the peer allows it to send (that is, up to the
5246 /// stream's outgoing flow control capacity).
5247 ///
5248 /// This means that the number of written bytes returned can be lower than
5249 /// the length of the input buffer when the stream doesn't have enough
5250 /// capacity for the operation to complete. The application should retry the
5251 /// operation once the stream is reported as writable again.
5252 ///
5253 /// Applications should call this method only after the handshake is
5254 /// completed (whenever [`is_established()`] returns `true`) or during
5255 /// early data if enabled (whenever [`is_in_early_data()`] returns `true`).
5256 ///
5257 /// [`Done`]: enum.Error.html#variant.Done
5258 /// [`StreamStopped`]: enum.Error.html#variant.StreamStopped
5259 /// [`is_established()`]: struct.Connection.html#method.is_established
5260 /// [`is_in_early_data()`]: struct.Connection.html#method.is_in_early_data
5261 ///
5262 /// ## Examples:
5263 ///
5264 /// ```no_run
5265 /// # let mut buf = [0; 512];
5266 /// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
5267 /// # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
5268 /// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
5269 /// # let peer = "127.0.0.1:1234".parse().unwrap();
5270 /// # let local = "127.0.0.1:4321".parse().unwrap();
5271 /// # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
5272 /// # let stream_id = 0;
5273 /// conn.stream_send(stream_id, b"hello", true)?;
5274 /// # Ok::<(), quiche::Error>(())
5275 /// ```
5276 pub fn stream_send(
5277 &mut self, stream_id: u64, buf: &[u8], fin: bool,
5278 ) -> Result<usize> {
5279 self.stream_do_send(
5280 stream_id,
5281 buf,
5282 fin,
5283 |stream: &mut stream::Stream<F>,
5284 buf: &[u8],
5285 cap: usize,
5286 fin: bool| {
5287 stream.send.write(&buf[..cap], fin).map(|v| (v, v))
5288 },
5289 )
5290 }
5291
5292 /// Writes data to a stream with zero copying, instead, it appends the
5293 /// provided buffer directly to the send queue if the capacity allows
5294 /// it.
5295 ///
5296 /// When a partial write happens (including when [`Error::Done`] is
5297 /// returned) the remaining (unwritten) buffer will also be returned.
5298 /// The application should retry the operation once the stream is
5299 /// reported as writable again.
5300 pub fn stream_send_zc(
5301 &mut self, stream_id: u64, buf: F::Buf, len: Option<usize>, fin: bool,
5302 ) -> Result<(usize, Option<F::Buf>)>
5303 where
5304 F::Buf: BufSplit,
5305 {
5306 self.stream_do_send(
5307 stream_id,
5308 buf,
5309 fin,
5310 |stream: &mut stream::Stream<F>,
5311 buf: F::Buf,
5312 cap: usize,
5313 fin: bool| {
5314 let len = len.unwrap_or(usize::MAX).min(cap);
5315 let (sent, remaining) = stream.send.append_buf(buf, len, fin)?;
5316 Ok((sent, (sent, remaining)))
5317 },
5318 )
5319 }
5320
5321 fn stream_do_send<B, R, SND>(
5322 &mut self, stream_id: u64, buf: B, fin: bool, write_fn: SND,
5323 ) -> Result<R>
5324 where
5325 B: AsRef<[u8]>,
5326 SND: FnOnce(&mut stream::Stream<F>, B, usize, bool) -> Result<(usize, R)>,
5327 {
5328 // We can't write on the peer's unidirectional streams.
5329 if !stream::is_bidi(stream_id) &&
5330 !stream::is_local(stream_id, self.is_server)
5331 {
5332 return Err(Error::InvalidStreamState(stream_id));
5333 }
5334
5335 let len = buf.as_ref().len();
5336
5337 // Mark the connection as blocked if the connection-level flow control
5338 // limit doesn't let us buffer all the data.
5339 //
5340 // Note that this is separate from "send capacity" as that also takes
5341 // congestion control into consideration.
5342 if self.max_tx_data - self.tx_data < len as u64 {
5343 self.blocked_limit = Some(self.max_tx_data);
5344 }
5345
5346 let cap = self.tx_cap;
5347
5348 // Get existing stream or create a new one.
5349 let stream = self.get_or_create_stream(stream_id, true)?;
5350
5351 #[cfg(feature = "qlog")]
5352 let offset = stream.send.off_back();
5353
5354 let was_writable = stream.is_writable();
5355
5356 let was_flushable = stream.is_flushable();
5357
5358 let priority_key = Arc::clone(&stream.priority_key);
5359
5360 // Truncate the input buffer based on the connection's send capacity if
5361 // necessary.
5362 //
5363 // When the cap is zero, the method returns Ok(0) *only* when the passed
5364 // buffer is empty. We return Error::Done otherwise.
5365 if cap == 0 && len > 0 {
5366 if was_writable {
5367 // When `stream_writable_next()` returns a stream, the writable
5368 // mark is removed, but because the stream is blocked by the
5369 // connection-level send capacity it won't be marked as writable
5370 // again once the capacity increases.
5371 //
5372 // Since the stream is writable already, mark it here instead.
5373 self.streams.insert_writable(&priority_key);
5374 }
5375
5376 return Err(Error::Done);
5377 }
5378
5379 let (cap, fin, blocked_by_cap) = if cap < len {
5380 (cap, false, true)
5381 } else {
5382 (len, fin, false)
5383 };
5384
5385 let (sent, ret) = match write_fn(stream, buf, cap, fin) {
5386 Ok(v) => v,
5387
5388 Err(e) => {
5389 self.streams.remove_writable(&priority_key);
5390 return Err(e);
5391 },
5392 };
5393
5394 let incremental = stream.incremental;
5395 let priority_key = Arc::clone(&stream.priority_key);
5396
5397 let flushable = stream.is_flushable();
5398
5399 let writable = stream.is_writable();
5400
5401 let empty_fin = len == 0 && fin;
5402
5403 if sent < cap {
5404 let max_off = stream.send.max_off();
5405
5406 if stream.send.blocked_at() != Some(max_off) {
5407 stream.send.update_blocked_at(Some(max_off));
5408 self.streams.insert_blocked(stream_id, max_off);
5409 }
5410 } else {
5411 stream.send.update_blocked_at(None);
5412 self.streams.remove_blocked(stream_id);
5413 }
5414
5415 // If the stream is now flushable push it to the flushable queue, but
5416 // only if it wasn't already queued.
5417 //
5418 // Consider the stream flushable also when we are sending a zero-length
5419 // frame that has the fin flag set.
5420 if (flushable || empty_fin) && !was_flushable {
5421 self.streams.insert_flushable(&priority_key);
5422 }
5423
5424 if !writable {
5425 self.streams.remove_writable(&priority_key);
5426 } else if was_writable && blocked_by_cap {
5427 // When `stream_writable_next()` returns a stream, the writable
5428 // mark is removed, but because the stream is blocked by the
5429 // connection-level send capacity it won't be marked as writable
5430 // again once the capacity increases.
5431 //
5432 // Since the stream is writable already, mark it here instead.
5433 self.streams.insert_writable(&priority_key);
5434 }
5435
5436 self.tx_cap -= sent;
5437
5438 self.tx_data += sent as u64;
5439
5440 self.tx_buffered += sent;
5441 self.check_tx_buffered_invariant();
5442
5443 qlog_with_type!(QLOG_DATA_MV, self.qlog, q, {
5444 let ev_data = EventData::DataMoved(qlog::events::quic::DataMoved {
5445 stream_id: Some(stream_id),
5446 offset: Some(offset),
5447 length: Some(sent as u64),
5448 from: Some(DataRecipient::Application),
5449 to: Some(DataRecipient::Transport),
5450 ..Default::default()
5451 });
5452
5453 let now = Instant::now();
5454 q.add_event_data_with_instant(ev_data, now).ok();
5455 });
5456
5457 if sent == 0 && cap > 0 {
5458 return Err(Error::Done);
5459 }
5460
5461 if incremental && writable {
5462 // Shuffle the incremental stream to the back of the queue.
5463 self.streams.remove_writable(&priority_key);
5464 self.streams.insert_writable(&priority_key);
5465 }
5466
5467 Ok(ret)
5468 }
5469
5470 /// Sets the priority for a stream.
5471 ///
5472 /// A stream's priority determines the order in which stream data is sent
5473 /// on the wire (streams with lower priority are sent first). Streams are
5474 /// created with a default priority of `127`.
5475 ///
5476 /// The target stream is created if it did not exist before calling this
5477 /// method.
5478 pub fn stream_priority(
5479 &mut self, stream_id: u64, urgency: u8, incremental: bool,
5480 ) -> Result<()> {
5481 // Get existing stream or create a new one, but if the stream
5482 // has already been closed and collected, ignore the prioritization.
5483 let stream = match self.get_or_create_stream(stream_id, true) {
5484 Ok(v) => v,
5485
5486 Err(Error::Done) => return Ok(()),
5487
5488 Err(e) => return Err(e),
5489 };
5490
5491 if stream.urgency == urgency && stream.incremental == incremental {
5492 return Ok(());
5493 }
5494
5495 stream.urgency = urgency;
5496 stream.incremental = incremental;
5497
5498 let new_priority_key = Arc::new(StreamPriorityKey {
5499 urgency: stream.urgency,
5500 incremental: stream.incremental,
5501 id: stream_id,
5502 ..Default::default()
5503 });
5504
5505 let old_priority_key =
5506 std::mem::replace(&mut stream.priority_key, new_priority_key.clone());
5507
5508 self.streams
5509 .update_priority(&old_priority_key, &new_priority_key);
5510
5511 Ok(())
5512 }
5513
5514 /// Shuts down reading or writing from/to the specified stream.
5515 ///
5516 /// When the `direction` argument is set to [`Shutdown::Read`], outstanding
5517 /// data in the stream's receive buffer is dropped, and no additional data
5518 /// is added to it. Data received after calling this method is still
5519 /// validated and acked but not stored, and [`stream_recv()`] will not
5520 /// return it to the application. In addition, a `STOP_SENDING` frame will
5521 /// be sent to the peer to signal it to stop sending data.
5522 ///
5523 /// When the `direction` argument is set to [`Shutdown::Write`], outstanding
5524 /// data in the stream's send buffer is dropped, and no additional data is
5525 /// added to it. Data passed to [`stream_send()`] after calling this method
5526 /// will be ignored. In addition, a `RESET_STREAM` frame will be sent to the
5527 /// peer to signal the reset.
5528 ///
5529 /// Locally-initiated unidirectional streams can only be closed in the
5530 /// [`Shutdown::Write`] direction. Remotely-initiated unidirectional streams
5531 /// can only be closed in the [`Shutdown::Read`] direction. Using an
5532 /// incorrect direction will return [`InvalidStreamState`].
5533 ///
5534 /// [`Shutdown::Read`]: enum.Shutdown.html#variant.Read
5535 /// [`Shutdown::Write`]: enum.Shutdown.html#variant.Write
5536 /// [`stream_recv()`]: struct.Connection.html#method.stream_recv
5537 /// [`stream_send()`]: struct.Connection.html#method.stream_send
5538 /// [`InvalidStreamState`]: enum.Error.html#variant.InvalidStreamState
5539 pub fn stream_shutdown(
5540 &mut self, stream_id: u64, direction: Shutdown, err: u64,
5541 ) -> Result<()> {
5542 // Don't try to stop a local unidirectional stream.
5543 if direction == Shutdown::Read &&
5544 stream::is_local(stream_id, self.is_server) &&
5545 !stream::is_bidi(stream_id)
5546 {
5547 return Err(Error::InvalidStreamState(stream_id));
5548 }
5549
5550 // Don't try to reset a remote unidirectional stream.
5551 if direction == Shutdown::Write &&
5552 !stream::is_local(stream_id, self.is_server) &&
5553 !stream::is_bidi(stream_id)
5554 {
5555 return Err(Error::InvalidStreamState(stream_id));
5556 }
5557
5558 // Get existing stream.
5559 let stream = self.streams.get_mut(stream_id).ok_or(Error::Done)?;
5560
5561 let priority_key = Arc::clone(&stream.priority_key);
5562
5563 match direction {
5564 Shutdown::Read => {
5565 let consumed = stream.recv.shutdown()?;
5566 self.flow_control.add_consumed(consumed);
5567 if self.flow_control.should_update_max_data() {
5568 self.almost_full = true;
5569 }
5570
5571 if !stream.recv.is_fin() {
5572 self.streams.insert_stopped(stream_id, err);
5573 }
5574
5575 // Once shutdown, the stream is guaranteed to be non-readable.
5576 self.streams.remove_readable(&priority_key);
5577
5578 self.stopped_stream_local_count =
5579 self.stopped_stream_local_count.saturating_add(1);
5580 },
5581
5582 Shutdown::Write => {
5583 let (final_size, unsent) = stream.send.shutdown()?;
5584
5585 // Claw back some flow control allowance from data that was
5586 // buffered but not actually sent before the stream was reset.
5587 self.tx_data = self.tx_data.saturating_sub(unsent);
5588
5589 self.tx_buffered =
5590 self.tx_buffered.saturating_sub(unsent as usize);
5591
5592 // These drops in qlog are a bit weird, but the only way to ensure
5593 // that all bytes that are moved from App to Transport in
5594 // stream_do_send are eventually moved from Transport to Dropped.
5595 // Ideally we would add a Transport to Network transition also as
5596 // a way to indicate when bytes were transmitted vs dropped
5597 // without ever being sent.
5598 qlog_with_type!(QLOG_DATA_MV, self.qlog, q, {
5599 let ev_data =
5600 EventData::DataMoved(qlog::events::quic::DataMoved {
5601 stream_id: Some(stream_id),
5602 offset: Some(final_size),
5603 length: Some(unsent),
5604 from: Some(DataRecipient::Transport),
5605 to: Some(DataRecipient::Dropped),
5606 ..Default::default()
5607 });
5608
5609 q.add_event_data_with_instant(ev_data, Instant::now()).ok();
5610 });
5611
5612 // Update send capacity.
5613 self.update_tx_cap();
5614
5615 self.streams.insert_reset(stream_id, err, final_size);
5616
5617 // Once shutdown, the stream is guaranteed to be non-writable.
5618 self.streams.remove_writable(&priority_key);
5619
5620 self.reset_stream_local_count =
5621 self.reset_stream_local_count.saturating_add(1);
5622 },
5623 }
5624
5625 Ok(())
5626 }
5627
5628 /// Returns the stream's send capacity in bytes.
5629 ///
5630 /// If the specified stream doesn't exist (including when it has already
5631 /// been completed and closed), the [`InvalidStreamState`] error will be
5632 /// returned.
5633 ///
5634 /// In addition, if the peer has signalled that it doesn't want to receive
5635 /// any more data from this stream by sending the `STOP_SENDING` frame, the
5636 /// [`StreamStopped`] error will be returned.
5637 ///
5638 /// [`InvalidStreamState`]: enum.Error.html#variant.InvalidStreamState
5639 /// [`StreamStopped`]: enum.Error.html#variant.StreamStopped
5640 #[inline]
5641 pub fn stream_capacity(&self, stream_id: u64) -> Result<usize> {
5642 if let Some(stream) = self.streams.get(stream_id) {
5643 let cap = cmp::min(self.tx_cap, stream.send.cap()?);
5644 return Ok(cap);
5645 };
5646
5647 Err(Error::InvalidStreamState(stream_id))
5648 }
5649
5650 /// Returns the next stream that has data to read.
5651 ///
5652 /// Note that once returned by this method, a stream ID will not be returned
5653 /// again until it is "re-armed".
5654 ///
5655 /// The application will need to read all of the pending data on the stream,
5656 /// and new data has to be received before the stream is reported again.
5657 ///
5658 /// This is unlike the [`readable()`] method, that returns the same list of
5659 /// readable streams when called multiple times in succession.
5660 ///
5661 /// [`readable()`]: struct.Connection.html#method.readable
5662 pub fn stream_readable_next(&mut self) -> Option<u64> {
5663 let priority_key = self.streams.readable.front().clone_pointer()?;
5664
5665 self.streams.remove_readable(&priority_key);
5666
5667 Some(priority_key.id)
5668 }
5669
5670 /// Returns true if the stream has data that can be read.
5671 pub fn stream_readable(&self, stream_id: u64) -> bool {
5672 let stream = match self.streams.get(stream_id) {
5673 Some(v) => v,
5674
5675 None => return false,
5676 };
5677
5678 stream.is_readable()
5679 }
5680
5681 /// Returns the next stream that can be written to.
5682 ///
5683 /// Note that once returned by this method, a stream ID will not be returned
5684 /// again until it is "re-armed".
5685 ///
5686 /// This is unlike the [`writable()`] method, that returns the same list of
5687 /// writable streams when called multiple times in succession. It is not
5688 /// advised to use both `stream_writable_next()` and [`writable()`] on the
5689 /// same connection, as it may lead to unexpected results.
5690 ///
5691 /// The [`stream_writable()`] method can also be used to fine-tune when a
5692 /// stream is reported as writable again.
5693 ///
5694 /// [`stream_writable()`]: struct.Connection.html#method.stream_writable
5695 /// [`writable()`]: struct.Connection.html#method.writable
5696 pub fn stream_writable_next(&mut self) -> Option<u64> {
5697 // If there is not enough connection-level send capacity, none of the
5698 // streams are writable.
5699 if self.tx_cap == 0 {
5700 return None;
5701 }
5702
5703 let mut cursor = self.streams.writable.front();
5704
5705 while let Some(priority_key) = cursor.clone_pointer() {
5706 if let Some(stream) = self.streams.get(priority_key.id) {
5707 let cap = match stream.send.cap() {
5708 Ok(v) => v,
5709
5710 // Return the stream to the application immediately if it's
5711 // stopped.
5712 Err(_) =>
5713 return {
5714 self.streams.remove_writable(&priority_key);
5715
5716 Some(priority_key.id)
5717 },
5718 };
5719
5720 if cmp::min(self.tx_cap, cap) >= stream.send_lowat {
5721 self.streams.remove_writable(&priority_key);
5722 return Some(priority_key.id);
5723 }
5724 }
5725
5726 cursor.move_next();
5727 }
5728
5729 None
5730 }
5731
5732 /// Returns true if the stream has enough send capacity.
5733 ///
5734 /// When `len` more bytes can be buffered into the given stream's send
5735 /// buffer, `true` will be returned, `false` otherwise.
5736 ///
5737 /// In the latter case, if the additional data can't be buffered due to
5738 /// flow control limits, the peer will also be notified, and a "low send
5739 /// watermark" will be set for the stream, such that it is not going to be
5740 /// reported as writable again by [`stream_writable_next()`] until its send
5741 /// capacity reaches `len`.
5742 ///
5743 /// If the specified stream doesn't exist (including when it has already
5744 /// been completed and closed), the [`InvalidStreamState`] error will be
5745 /// returned.
5746 ///
5747 /// In addition, if the peer has signalled that it doesn't want to receive
5748 /// any more data from this stream by sending the `STOP_SENDING` frame, the
5749 /// [`StreamStopped`] error will be returned.
5750 ///
5751 /// [`stream_writable_next()`]: struct.Connection.html#method.stream_writable_next
5752 /// [`InvalidStreamState`]: enum.Error.html#variant.InvalidStreamState
5753 /// [`StreamStopped`]: enum.Error.html#variant.StreamStopped
5754 #[inline]
5755 pub fn stream_writable(
5756 &mut self, stream_id: u64, len: usize,
5757 ) -> Result<bool> {
5758 if self.stream_capacity(stream_id)? >= len {
5759 return Ok(true);
5760 }
5761
5762 let stream = match self.streams.get_mut(stream_id) {
5763 Some(v) => v,
5764
5765 None => return Err(Error::InvalidStreamState(stream_id)),
5766 };
5767
5768 stream.send_lowat = cmp::max(1, len);
5769
5770 let is_writable = stream.is_writable();
5771
5772 let priority_key = Arc::clone(&stream.priority_key);
5773
5774 if self.max_tx_data - self.tx_data < len as u64 {
5775 self.blocked_limit = Some(self.max_tx_data);
5776 }
5777
5778 if stream.send.cap()? < len {
5779 let max_off = stream.send.max_off();
5780 if stream.send.blocked_at() != Some(max_off) {
5781 stream.send.update_blocked_at(Some(max_off));
5782 self.streams.insert_blocked(stream_id, max_off);
5783 }
5784 } else if is_writable {
5785 // When `stream_writable_next()` returns a stream, the writable
5786 // mark is removed, but because the stream is blocked by the
5787 // connection-level send capacity it won't be marked as writable
5788 // again once the capacity increases.
5789 //
5790 // Since the stream is writable already, mark it here instead.
5791 self.streams.insert_writable(&priority_key);
5792 }
5793
5794 Ok(false)
5795 }
5796
5797 /// Returns true if all the data has been read from the specified stream.
5798 ///
5799 /// This instructs the application that all the data received from the
5800 /// peer on the stream has been read, and there won't be anymore in the
5801 /// future.
5802 ///
5803 /// Basically this returns true when the peer either set the `fin` flag
5804 /// for the stream, or sent `RESET_STREAM`.
5805 #[inline]
5806 pub fn stream_finished(&self, stream_id: u64) -> bool {
5807 let stream = match self.streams.get(stream_id) {
5808 Some(v) => v,
5809
5810 None => return true,
5811 };
5812
5813 stream.recv.is_fin()
5814 }
5815
5816 /// Returns the number of bidirectional streams that can be created
5817 /// before the peer's stream count limit is reached.
5818 ///
5819 /// This can be useful to know if it's possible to create a bidirectional
5820 /// stream without trying it first.
5821 #[inline]
5822 pub fn peer_streams_left_bidi(&self) -> u64 {
5823 self.streams.peer_streams_left_bidi()
5824 }
5825
5826 /// Returns the number of unidirectional streams that can be created
5827 /// before the peer's stream count limit is reached.
5828 ///
5829 /// This can be useful to know if it's possible to create a unidirectional
5830 /// stream without trying it first.
5831 #[inline]
5832 pub fn peer_streams_left_uni(&self) -> u64 {
5833 self.streams.peer_streams_left_uni()
5834 }
5835
5836 /// Returns an iterator over streams that have outstanding data to read.
5837 ///
5838 /// Note that the iterator will only include streams that were readable at
5839 /// the time the iterator itself was created (i.e. when `readable()` was
5840 /// called). To account for newly readable streams, the iterator needs to
5841 /// be created again.
5842 ///
5843 /// ## Examples:
5844 ///
5845 /// ```no_run
5846 /// # let mut buf = [0; 512];
5847 /// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
5848 /// # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
5849 /// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
5850 /// # let peer = "127.0.0.1:1234".parse().unwrap();
5851 /// # let local = socket.local_addr().unwrap();
5852 /// # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
5853 /// // Iterate over readable streams.
5854 /// for stream_id in conn.readable() {
5855 /// // Stream is readable, read until there's no more data.
5856 /// while let Ok((read, fin)) = conn.stream_recv(stream_id, &mut buf) {
5857 /// println!("Got {} bytes on stream {}", read, stream_id);
5858 /// }
5859 /// }
5860 /// # Ok::<(), quiche::Error>(())
5861 /// ```
5862 #[inline]
5863 pub fn readable(&self) -> StreamIter {
5864 self.streams.readable()
5865 }
5866
5867 /// Returns an iterator over streams that can be written in priority order.
5868 ///
5869 /// The priority order is based on RFC 9218 scheduling recommendations.
5870 /// Stream priority can be controlled using [`stream_priority()`]. In order
5871 /// to support fairness requirements, each time this method is called,
5872 /// internal state is updated. Therefore the iterator ordering can change
5873 /// between calls, even if no streams were added or removed.
5874 ///
5875 /// A "writable" stream is a stream that has enough flow control capacity to
5876 /// send data to the peer. To avoid buffering an infinite amount of data,
5877 /// streams are only allowed to buffer outgoing data up to the amount that
5878 /// the peer allows to send.
5879 ///
5880 /// Note that the iterator will only include streams that were writable at
5881 /// the time the iterator itself was created (i.e. when `writable()` was
5882 /// called). To account for newly writable streams, the iterator needs to be
5883 /// created again.
5884 ///
5885 /// ## Examples:
5886 ///
5887 /// ```no_run
5888 /// # let mut buf = [0; 512];
5889 /// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
5890 /// # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
5891 /// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
5892 /// # let local = socket.local_addr().unwrap();
5893 /// # let peer = "127.0.0.1:1234".parse().unwrap();
5894 /// # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
5895 /// // Iterate over writable streams.
5896 /// for stream_id in conn.writable() {
5897 /// // Stream is writable, write some data.
5898 /// if let Ok(written) = conn.stream_send(stream_id, &buf, false) {
5899 /// println!("Written {} bytes on stream {}", written, stream_id);
5900 /// }
5901 /// }
5902 /// # Ok::<(), quiche::Error>(())
5903 /// ```
5904 /// [`stream_priority()`]: struct.Connection.html#method.stream_priority
5905 #[inline]
5906 pub fn writable(&self) -> StreamIter {
5907 // If there is not enough connection-level send capacity, none of the
5908 // streams are writable, so return an empty iterator.
5909 if self.tx_cap == 0 {
5910 return StreamIter::default();
5911 }
5912
5913 self.streams.writable()
5914 }
5915
5916 /// Returns the maximum possible size of egress UDP payloads.
5917 ///
5918 /// This is the maximum size of UDP payloads that can be sent, and depends
5919 /// on both the configured maximum send payload size of the local endpoint
5920 /// (as configured with [`set_max_send_udp_payload_size()`]), as well as
5921 /// the transport parameter advertised by the remote peer.
5922 ///
5923 /// Note that this value can change during the lifetime of the connection,
5924 /// but should remain stable across consecutive calls to [`send()`].
5925 ///
5926 /// [`set_max_send_udp_payload_size()`]:
5927 /// struct.Config.html#method.set_max_send_udp_payload_size
5928 /// [`send()`]: struct.Connection.html#method.send
5929 pub fn max_send_udp_payload_size(&self) -> usize {
5930 let max_datagram_size = self
5931 .paths
5932 .get_active()
5933 .ok()
5934 .map(|p| p.recovery.max_datagram_size());
5935
5936 if let Some(max_datagram_size) = max_datagram_size {
5937 if self.is_established() {
5938 // We cap the maximum packet size to 16KB or so, so that it can be
5939 // always encoded with a 2-byte varint.
5940 return cmp::min(16383, max_datagram_size);
5941 }
5942 }
5943
5944 // Allow for 1200 bytes (minimum QUIC packet size) during the
5945 // handshake.
5946 MIN_CLIENT_INITIAL_LEN
5947 }
5948
5949 /// Schedule an ack-eliciting packet on the active path.
5950 ///
5951 /// QUIC packets might not contain ack-eliciting frames during normal
5952 /// operating conditions. If the packet would already contain
5953 /// ack-eliciting frames, this method does not change any behavior.
5954 /// However, if the packet would not ordinarily contain ack-eliciting
5955 /// frames, this method ensures that a PING frame sent.
5956 ///
5957 /// Calling this method multiple times before [`send()`] has no effect.
5958 ///
5959 /// [`send()`]: struct.Connection.html#method.send
5960 pub fn send_ack_eliciting(&mut self) -> Result<()> {
5961 if self.is_closed() || self.is_draining() {
5962 return Ok(());
5963 }
5964 self.paths.get_active_mut()?.needs_ack_eliciting = true;
5965 Ok(())
5966 }
5967
5968 /// Schedule an ack-eliciting packet on the specified path.
5969 ///
5970 /// See [`send_ack_eliciting()`] for more detail. [`InvalidState`] is
5971 /// returned if there is no record of the path.
5972 ///
5973 /// [`send_ack_eliciting()`]: struct.Connection.html#method.send_ack_eliciting
5974 /// [`InvalidState`]: enum.Error.html#variant.InvalidState
5975 pub fn send_ack_eliciting_on_path(
5976 &mut self, local: SocketAddr, peer: SocketAddr,
5977 ) -> Result<()> {
5978 if self.is_closed() || self.is_draining() {
5979 return Ok(());
5980 }
5981 let path_id = self
5982 .paths
5983 .path_id_from_addrs(&(local, peer))
5984 .ok_or(Error::InvalidState)?;
5985 self.paths.get_mut(path_id)?.needs_ack_eliciting = true;
5986 Ok(())
5987 }
5988
5989 /// Reads the first received DATAGRAM.
5990 ///
5991 /// On success the DATAGRAM's data is returned along with its size.
5992 ///
5993 /// [`Done`] is returned if there is no data to read.
5994 ///
5995 /// [`BufferTooShort`] is returned if the provided buffer is too small for
5996 /// the DATAGRAM.
5997 ///
5998 /// [`Done`]: enum.Error.html#variant.Done
5999 /// [`BufferTooShort`]: enum.Error.html#variant.BufferTooShort
6000 ///
6001 /// ## Examples:
6002 ///
6003 /// ```no_run
6004 /// # let mut buf = [0; 512];
6005 /// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
6006 /// # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
6007 /// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
6008 /// # let peer = "127.0.0.1:1234".parse().unwrap();
6009 /// # let local = socket.local_addr().unwrap();
6010 /// # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
6011 /// let mut dgram_buf = [0; 512];
6012 /// while let Ok((len)) = conn.dgram_recv(&mut dgram_buf) {
6013 /// println!("Got {} bytes of DATAGRAM", len);
6014 /// }
6015 /// # Ok::<(), quiche::Error>(())
6016 /// ```
6017 #[inline]
6018 pub fn dgram_recv(&mut self, buf: &mut [u8]) -> Result<usize> {
6019 match self.dgram_recv_queue.pop() {
6020 Some(d) => {
6021 if d.len() > buf.len() {
6022 return Err(Error::BufferTooShort);
6023 }
6024
6025 buf[..d.len()].copy_from_slice(&d);
6026 Ok(d.len())
6027 },
6028
6029 None => Err(Error::Done),
6030 }
6031 }
6032
6033 /// Reads the first received DATAGRAM.
6034 ///
6035 /// This is the same as [`dgram_recv()`] but returns the DATAGRAM as a
6036 /// `Vec<u8>` instead of copying into the provided buffer.
6037 ///
6038 /// [`dgram_recv()`]: struct.Connection.html#method.dgram_recv
6039 #[inline]
6040 pub fn dgram_recv_vec(&mut self) -> Result<Vec<u8>> {
6041 match self.dgram_recv_queue.pop() {
6042 Some(d) => Ok(d),
6043
6044 None => Err(Error::Done),
6045 }
6046 }
6047
6048 /// Reads the first received DATAGRAM without removing it from the queue.
6049 ///
6050 /// On success the DATAGRAM's data is returned along with the actual number
6051 /// of bytes peeked. The requested length cannot exceed the DATAGRAM's
6052 /// actual length.
6053 ///
6054 /// [`Done`] is returned if there is no data to read.
6055 ///
6056 /// [`BufferTooShort`] is returned if the provided buffer is smaller the
6057 /// number of bytes to peek.
6058 ///
6059 /// [`Done`]: enum.Error.html#variant.Done
6060 /// [`BufferTooShort`]: enum.Error.html#variant.BufferTooShort
6061 #[inline]
6062 pub fn dgram_recv_peek(&self, buf: &mut [u8], len: usize) -> Result<usize> {
6063 self.dgram_recv_queue.peek_front_bytes(buf, len)
6064 }
6065
6066 /// Returns the length of the first stored DATAGRAM.
6067 #[inline]
6068 pub fn dgram_recv_front_len(&self) -> Option<usize> {
6069 self.dgram_recv_queue.peek_front_len()
6070 }
6071
6072 /// Returns the number of items in the DATAGRAM receive queue.
6073 #[inline]
6074 pub fn dgram_recv_queue_len(&self) -> usize {
6075 self.dgram_recv_queue.len()
6076 }
6077
6078 /// Returns the total size of all items in the DATAGRAM receive queue.
6079 #[inline]
6080 pub fn dgram_recv_queue_byte_size(&self) -> usize {
6081 self.dgram_recv_queue.byte_size()
6082 }
6083
6084 /// Returns the number of items in the DATAGRAM send queue.
6085 #[inline]
6086 pub fn dgram_send_queue_len(&self) -> usize {
6087 self.dgram_send_queue.len()
6088 }
6089
6090 /// Returns the total size of all items in the DATAGRAM send queue.
6091 #[inline]
6092 pub fn dgram_send_queue_byte_size(&self) -> usize {
6093 self.dgram_send_queue.byte_size()
6094 }
6095
6096 /// Returns whether or not the DATAGRAM send queue is full.
6097 #[inline]
6098 pub fn is_dgram_send_queue_full(&self) -> bool {
6099 self.dgram_send_queue.is_full()
6100 }
6101
6102 /// Returns whether or not the DATAGRAM recv queue is full.
6103 #[inline]
6104 pub fn is_dgram_recv_queue_full(&self) -> bool {
6105 self.dgram_recv_queue.is_full()
6106 }
6107
6108 /// Sends data in a DATAGRAM frame.
6109 ///
6110 /// [`Done`] is returned if no data was written.
6111 /// [`InvalidState`] is returned if the peer does not support DATAGRAM.
6112 /// [`BufferTooShort`] is returned if the DATAGRAM frame length is larger
6113 /// than peer's supported DATAGRAM frame length. Use
6114 /// [`dgram_max_writable_len()`] to get the largest supported DATAGRAM
6115 /// frame length.
6116 ///
6117 /// Note that there is no flow control of DATAGRAM frames, so in order to
6118 /// avoid buffering an infinite amount of frames we apply an internal
6119 /// limit.
6120 ///
6121 /// [`Done`]: enum.Error.html#variant.Done
6122 /// [`InvalidState`]: enum.Error.html#variant.InvalidState
6123 /// [`BufferTooShort`]: enum.Error.html#variant.BufferTooShort
6124 /// [`dgram_max_writable_len()`]:
6125 /// struct.Connection.html#method.dgram_max_writable_len
6126 ///
6127 /// ## Examples:
6128 ///
6129 /// ```no_run
6130 /// # let mut buf = [0; 512];
6131 /// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
6132 /// # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
6133 /// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
6134 /// # let peer = "127.0.0.1:1234".parse().unwrap();
6135 /// # let local = socket.local_addr().unwrap();
6136 /// # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
6137 /// conn.dgram_send(b"hello")?;
6138 /// # Ok::<(), quiche::Error>(())
6139 /// ```
6140 pub fn dgram_send(&mut self, buf: &[u8]) -> Result<()> {
6141 let max_payload_len = match self.dgram_max_writable_len() {
6142 Some(v) => v,
6143
6144 None => return Err(Error::InvalidState),
6145 };
6146
6147 if buf.len() > max_payload_len {
6148 return Err(Error::BufferTooShort);
6149 }
6150
6151 self.dgram_send_queue.push(buf.to_vec())?;
6152
6153 let active_path = self.paths.get_active_mut()?;
6154
6155 if self.dgram_send_queue.byte_size() >
6156 active_path.recovery.cwnd_available()
6157 {
6158 active_path.recovery.update_app_limited(false);
6159 }
6160
6161 Ok(())
6162 }
6163
6164 /// Sends data in a DATAGRAM frame.
6165 ///
6166 /// This is the same as [`dgram_send()`] but takes a `Vec<u8>` instead of
6167 /// a slice.
6168 ///
6169 /// [`dgram_send()`]: struct.Connection.html#method.dgram_send
6170 pub fn dgram_send_vec(&mut self, buf: Vec<u8>) -> Result<()> {
6171 let max_payload_len = match self.dgram_max_writable_len() {
6172 Some(v) => v,
6173
6174 None => return Err(Error::InvalidState),
6175 };
6176
6177 if buf.len() > max_payload_len {
6178 return Err(Error::BufferTooShort);
6179 }
6180
6181 self.dgram_send_queue.push(buf)?;
6182
6183 let active_path = self.paths.get_active_mut()?;
6184
6185 if self.dgram_send_queue.byte_size() >
6186 active_path.recovery.cwnd_available()
6187 {
6188 active_path.recovery.update_app_limited(false);
6189 }
6190
6191 Ok(())
6192 }
6193
6194 /// Purges queued outgoing DATAGRAMs matching the predicate.
6195 ///
6196 /// In other words, remove all elements `e` such that `f(&e)` returns true.
6197 ///
6198 /// ## Examples:
6199 /// ```no_run
6200 /// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
6201 /// # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
6202 /// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
6203 /// # let peer = "127.0.0.1:1234".parse().unwrap();
6204 /// # let local = socket.local_addr().unwrap();
6205 /// # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
6206 /// conn.dgram_send(b"hello")?;
6207 /// conn.dgram_purge_outgoing(&|d: &[u8]| -> bool { d[0] == 0 });
6208 /// # Ok::<(), quiche::Error>(())
6209 /// ```
6210 #[inline]
6211 pub fn dgram_purge_outgoing<FN: Fn(&[u8]) -> bool>(&mut self, f: FN) {
6212 self.dgram_send_queue.purge(f);
6213 }
6214
6215 /// Returns the maximum DATAGRAM payload that can be sent.
6216 ///
6217 /// [`None`] is returned if the peer hasn't advertised a maximum DATAGRAM
6218 /// frame size.
6219 ///
6220 /// ## Examples:
6221 ///
6222 /// ```no_run
6223 /// # let mut buf = [0; 512];
6224 /// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
6225 /// # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
6226 /// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
6227 /// # let peer = "127.0.0.1:1234".parse().unwrap();
6228 /// # let local = socket.local_addr().unwrap();
6229 /// # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
6230 /// if let Some(payload_size) = conn.dgram_max_writable_len() {
6231 /// if payload_size > 5 {
6232 /// conn.dgram_send(b"hello")?;
6233 /// }
6234 /// }
6235 /// # Ok::<(), quiche::Error>(())
6236 /// ```
6237 #[inline]
6238 pub fn dgram_max_writable_len(&self) -> Option<usize> {
6239 match self.peer_transport_params.max_datagram_frame_size {
6240 None => None,
6241 Some(peer_frame_len) => {
6242 let dcid = self.destination_id();
6243 // Start from the maximum packet size...
6244 let mut max_len = self.max_send_udp_payload_size();
6245 // ...subtract the Short packet header overhead...
6246 // (1 byte of pkt_len + len of dcid)
6247 max_len = max_len.saturating_sub(1 + dcid.len());
6248 // ...subtract the packet number (max len)...
6249 max_len = max_len.saturating_sub(packet::MAX_PKT_NUM_LEN);
6250 // ...subtract the crypto overhead...
6251 max_len = max_len.saturating_sub(
6252 self.crypto_ctx[packet::Epoch::Application]
6253 .crypto_overhead()?,
6254 );
6255 // ...clamp to what peer can support...
6256 max_len = cmp::min(peer_frame_len as usize, max_len);
6257 // ...subtract frame overhead, checked for underflow.
6258 // (1 byte of frame type + len of length )
6259 max_len.checked_sub(1 + frame::MAX_DGRAM_OVERHEAD)
6260 },
6261 }
6262 }
6263
6264 fn dgram_enabled(&self) -> bool {
6265 self.local_transport_params
6266 .max_datagram_frame_size
6267 .is_some()
6268 }
6269
6270 /// Returns when the next timeout event will occur.
6271 ///
6272 /// Once the timeout Instant has been reached, the [`on_timeout()`] method
6273 /// should be called. A timeout of `None` means that the timer should be
6274 /// disarmed.
6275 ///
6276 /// [`on_timeout()`]: struct.Connection.html#method.on_timeout
6277 pub fn timeout_instant(&self) -> Option<Instant> {
6278 if self.is_closed() {
6279 return None;
6280 }
6281
6282 if self.is_draining() {
6283 // Draining timer takes precedence over all other timers. If it is
6284 // set it means the connection is closing so there's no point in
6285 // processing the other timers.
6286 self.draining_timer
6287 } else {
6288 // Use the lowest timer value (i.e. "sooner") among idle and loss
6289 // detection timers. If they are both unset (i.e. `None`) then the
6290 // result is `None`, but if at least one of them is set then a
6291 // `Some(...)` value is returned.
6292 let path_timer = self
6293 .paths
6294 .iter()
6295 .filter_map(|(_, p)| p.recovery.loss_detection_timer())
6296 .min();
6297
6298 let key_update_timer = self.crypto_ctx[packet::Epoch::Application]
6299 .key_update
6300 .as_ref()
6301 .map(|key_update| key_update.timer);
6302
6303 let timers = [self.idle_timer, path_timer, key_update_timer];
6304
6305 timers.iter().filter_map(|&x| x).min()
6306 }
6307 }
6308
6309 /// Returns the amount of time until the next timeout event.
6310 ///
6311 /// Once the given duration has elapsed, the [`on_timeout()`] method should
6312 /// be called. A timeout of `None` means that the timer should be disarmed.
6313 ///
6314 /// [`on_timeout()`]: struct.Connection.html#method.on_timeout
6315 pub fn timeout(&self) -> Option<Duration> {
6316 self.timeout_instant().map(|timeout| {
6317 let now = Instant::now();
6318
6319 if timeout <= now {
6320 Duration::ZERO
6321 } else {
6322 timeout.duration_since(now)
6323 }
6324 })
6325 }
6326
6327 /// Processes a timeout event.
6328 ///
6329 /// If no timeout has occurred it does nothing.
6330 pub fn on_timeout(&mut self) {
6331 let now = Instant::now();
6332
6333 if let Some(draining_timer) = self.draining_timer {
6334 if draining_timer <= now {
6335 trace!("{} draining timeout expired", self.trace_id);
6336
6337 self.mark_closed();
6338 }
6339
6340 // Draining timer takes precedence over all other timers. If it is
6341 // set it means the connection is closing so there's no point in
6342 // processing the other timers.
6343 return;
6344 }
6345
6346 if let Some(timer) = self.idle_timer {
6347 if timer <= now {
6348 trace!("{} idle timeout expired", self.trace_id);
6349
6350 self.mark_closed();
6351 self.timed_out = true;
6352 return;
6353 }
6354 }
6355
6356 if let Some(timer) = self.crypto_ctx[packet::Epoch::Application]
6357 .key_update
6358 .as_ref()
6359 .map(|key_update| key_update.timer)
6360 {
6361 if timer <= now {
6362 // Discard previous key once key update timer expired.
6363 let _ = self.crypto_ctx[packet::Epoch::Application]
6364 .key_update
6365 .take();
6366 }
6367 }
6368
6369 let handshake_status = self.handshake_status();
6370
6371 for (_, p) in self.paths.iter_mut() {
6372 if let Some(timer) = p.recovery.loss_detection_timer() {
6373 if timer <= now {
6374 trace!("{} loss detection timeout expired", self.trace_id);
6375
6376 let OnLossDetectionTimeoutOutcome {
6377 lost_packets,
6378 lost_bytes,
6379 } = p.on_loss_detection_timeout(
6380 handshake_status,
6381 now,
6382 self.is_server,
6383 &self.trace_id,
6384 );
6385
6386 self.lost_count += lost_packets;
6387 self.lost_bytes += lost_bytes as u64;
6388
6389 qlog_with_type!(QLOG_METRICS, self.qlog, q, {
6390 p.recovery.maybe_qlog(q, now);
6391 });
6392 }
6393 }
6394 }
6395
6396 // Notify timeout events to the application.
6397 self.paths.notify_failed_validations();
6398
6399 // If the active path failed, try to find a new candidate.
6400 if self.paths.get_active_path_id().is_err() {
6401 match self.paths.find_candidate_path() {
6402 Some(pid) => {
6403 if self.set_active_path(pid, now).is_err() {
6404 // The connection cannot continue.
6405 self.mark_closed();
6406 }
6407 },
6408
6409 // The connection cannot continue.
6410 None => {
6411 self.mark_closed();
6412 },
6413 }
6414 }
6415 }
6416
6417 /// Requests the stack to perform path validation of the proposed 4-tuple.
6418 ///
6419 /// Probing new paths requires spare Connection IDs at both the host and the
6420 /// peer sides. If it is not the case, it raises an [`OutOfIdentifiers`].
6421 ///
6422 /// The probing of new addresses can only be done by the client. The server
6423 /// can only probe network paths that were previously advertised by
6424 /// [`PathEvent::New`]. If the server tries to probe such an unseen network
6425 /// path, this call raises an [`InvalidState`].
6426 ///
6427 /// The caller might also want to probe an existing path. In such case, it
6428 /// triggers a PATH_CHALLENGE frame, but it does not require spare CIDs.
6429 ///
6430 /// A server always probes a new path it observes. Calling this method is
6431 /// hence not required to validate a new path. However, a server can still
6432 /// request an additional path validation of the proposed 4-tuple.
6433 ///
6434 /// Calling this method several times before calling [`send()`] or
6435 /// [`send_on_path()`] results in a single probe being generated. An
6436 /// application wanting to send multiple in-flight probes must call this
6437 /// method again after having sent packets.
6438 ///
6439 /// Returns the Destination Connection ID sequence number associated to that
6440 /// path.
6441 ///
6442 /// [`PathEvent::New`]: enum.PathEvent.html#variant.New
6443 /// [`OutOfIdentifiers`]: enum.Error.html#OutOfIdentifiers
6444 /// [`InvalidState`]: enum.Error.html#InvalidState
6445 /// [`send()`]: struct.Connection.html#method.send
6446 /// [`send_on_path()`]: struct.Connection.html#method.send_on_path
6447 pub fn probe_path(
6448 &mut self, local_addr: SocketAddr, peer_addr: SocketAddr,
6449 ) -> Result<u64> {
6450 // We may want to probe an existing path.
6451 let pid = match self.paths.path_id_from_addrs(&(local_addr, peer_addr)) {
6452 Some(pid) => pid,
6453 None => self.create_path_on_client(local_addr, peer_addr)?,
6454 };
6455
6456 let path = self.paths.get_mut(pid)?;
6457 path.request_validation();
6458
6459 path.active_dcid_seq.ok_or(Error::InvalidState)
6460 }
6461
6462 /// Migrates the connection to a new local address `local_addr`.
6463 ///
6464 /// The behavior is similar to [`migrate()`], with the nuance that the
6465 /// connection only changes the local address, but not the peer one.
6466 ///
6467 /// See [`migrate()`] for the full specification of this method.
6468 ///
6469 /// [`migrate()`]: struct.Connection.html#method.migrate
6470 pub fn migrate_source(&mut self, local_addr: SocketAddr) -> Result<u64> {
6471 let peer_addr = self.paths.get_active()?.peer_addr();
6472 self.migrate(local_addr, peer_addr)
6473 }
6474
6475 /// Migrates the connection over the given network path between `local_addr`
6476 /// and `peer_addr`.
6477 ///
6478 /// Connection migration can only be initiated by the client. Calling this
6479 /// method as a server returns [`InvalidState`].
6480 ///
6481 /// To initiate voluntary migration, there should be enough Connection IDs
6482 /// at both sides. If this requirement is not satisfied, this call returns
6483 /// [`OutOfIdentifiers`].
6484 ///
6485 /// Returns the Destination Connection ID associated to that migrated path.
6486 ///
6487 /// [`OutOfIdentifiers`]: enum.Error.html#OutOfIdentifiers
6488 /// [`InvalidState`]: enum.Error.html#InvalidState
6489 pub fn migrate(
6490 &mut self, local_addr: SocketAddr, peer_addr: SocketAddr,
6491 ) -> Result<u64> {
6492 if self.is_server {
6493 return Err(Error::InvalidState);
6494 }
6495
6496 // If the path already exists, mark it as the active one.
6497 let (pid, dcid_seq) = if let Some(pid) =
6498 self.paths.path_id_from_addrs(&(local_addr, peer_addr))
6499 {
6500 let path = self.paths.get_mut(pid)?;
6501
6502 // If it is already active, do nothing.
6503 if path.active() {
6504 return path.active_dcid_seq.ok_or(Error::OutOfIdentifiers);
6505 }
6506
6507 // Ensures that a Source Connection ID has been dedicated to this
6508 // path, or a free one is available. This is only required if the
6509 // host uses non-zero length Source Connection IDs.
6510 if !self.ids.zero_length_scid() &&
6511 path.active_scid_seq.is_none() &&
6512 self.ids.available_scids() == 0
6513 {
6514 return Err(Error::OutOfIdentifiers);
6515 }
6516
6517 // Ensures that the migrated path has a Destination Connection ID.
6518 let dcid_seq = if let Some(dcid_seq) = path.active_dcid_seq {
6519 dcid_seq
6520 } else {
6521 let dcid_seq = self
6522 .ids
6523 .lowest_available_dcid_seq()
6524 .ok_or(Error::OutOfIdentifiers)?;
6525
6526 self.ids.link_dcid_to_path_id(dcid_seq, pid)?;
6527 path.active_dcid_seq = Some(dcid_seq);
6528
6529 dcid_seq
6530 };
6531
6532 (pid, dcid_seq)
6533 } else {
6534 let pid = self.create_path_on_client(local_addr, peer_addr)?;
6535
6536 let dcid_seq = self
6537 .paths
6538 .get(pid)?
6539 .active_dcid_seq
6540 .ok_or(Error::InvalidState)?;
6541
6542 (pid, dcid_seq)
6543 };
6544
6545 // Change the active path.
6546 self.set_active_path(pid, Instant::now())?;
6547
6548 Ok(dcid_seq)
6549 }
6550
6551 /// Provides additional source Connection IDs that the peer can use to reach
6552 /// this host.
6553 ///
6554 /// This triggers sending NEW_CONNECTION_ID frames if the provided Source
6555 /// Connection ID is not already present. In the case the caller tries to
6556 /// reuse a Connection ID with a different reset token, this raises an
6557 /// `InvalidState`.
6558 ///
6559 /// At any time, the peer cannot have more Destination Connection IDs than
6560 /// the maximum number of active Connection IDs it negotiated. In such case
6561 /// (i.e., when [`scids_left()`] returns 0), if the host agrees to
6562 /// request the removal of previous connection IDs, it sets the
6563 /// `retire_if_needed` parameter. Otherwise, an [`IdLimit`] is returned.
6564 ///
6565 /// Note that setting `retire_if_needed` does not prevent this function from
6566 /// returning an [`IdLimit`] in the case the caller wants to retire still
6567 /// unannounced Connection IDs.
6568 ///
6569 /// The caller is responsible for ensuring that the provided `scid` is not
6570 /// repeated several times over the connection. quiche ensures that as long
6571 /// as the provided Connection ID is still in use (i.e., not retired), it
6572 /// does not assign a different sequence number.
6573 ///
6574 /// Note that if the host uses zero-length Source Connection IDs, it cannot
6575 /// advertise Source Connection IDs and calling this method returns an
6576 /// [`InvalidState`].
6577 ///
6578 /// Returns the sequence number associated to the provided Connection ID.
6579 ///
6580 /// [`scids_left()`]: struct.Connection.html#method.scids_left
6581 /// [`IdLimit`]: enum.Error.html#IdLimit
6582 /// [`InvalidState`]: enum.Error.html#InvalidState
6583 pub fn new_scid(
6584 &mut self, scid: &ConnectionId, reset_token: u128, retire_if_needed: bool,
6585 ) -> Result<u64> {
6586 self.ids.new_scid(
6587 scid.to_vec().into(),
6588 Some(reset_token),
6589 true,
6590 None,
6591 retire_if_needed,
6592 )
6593 }
6594
6595 /// Returns the number of source Connection IDs that are active. This is
6596 /// only meaningful if the host uses non-zero length Source Connection IDs.
6597 pub fn active_scids(&self) -> usize {
6598 self.ids.active_source_cids()
6599 }
6600
6601 /// Returns the number of source Connection IDs that should be provided
6602 /// to the peer without exceeding the limit it advertised.
6603 ///
6604 /// This will automatically limit the number of Connection IDs to the
6605 /// minimum between the locally configured active connection ID limit,
6606 /// and the one sent by the peer.
6607 ///
6608 /// To obtain the maximum possible value allowed by the peer an application
6609 /// can instead inspect the [`peer_active_conn_id_limit`] value.
6610 ///
6611 /// [`peer_active_conn_id_limit`]: struct.Stats.html#structfield.peer_active_conn_id_limit
6612 #[inline]
6613 pub fn scids_left(&self) -> usize {
6614 let max_active_source_cids = cmp::min(
6615 self.peer_transport_params.active_conn_id_limit,
6616 self.local_transport_params.active_conn_id_limit,
6617 ) as usize;
6618
6619 max_active_source_cids - self.active_scids()
6620 }
6621
6622 /// Requests the retirement of the destination Connection ID used by the
6623 /// host to reach its peer.
6624 ///
6625 /// This triggers sending RETIRE_CONNECTION_ID frames.
6626 ///
6627 /// If the application tries to retire a non-existing Destination Connection
6628 /// ID sequence number, or if it uses zero-length Destination Connection ID,
6629 /// this method returns an [`InvalidState`].
6630 ///
6631 /// At any time, the host must have at least one Destination ID. If the
6632 /// application tries to retire the last one, or if the caller tries to
6633 /// retire the destination Connection ID used by the current active path
6634 /// while having neither spare Destination Connection IDs nor validated
6635 /// network paths, this method returns an [`OutOfIdentifiers`]. This
6636 /// behavior prevents the caller from stalling the connection due to the
6637 /// lack of validated path to send non-probing packets.
6638 ///
6639 /// [`InvalidState`]: enum.Error.html#InvalidState
6640 /// [`OutOfIdentifiers`]: enum.Error.html#OutOfIdentifiers
6641 pub fn retire_dcid(&mut self, dcid_seq: u64) -> Result<()> {
6642 if self.ids.zero_length_dcid() {
6643 return Err(Error::InvalidState);
6644 }
6645
6646 let active_path_dcid_seq = self
6647 .paths
6648 .get_active()?
6649 .active_dcid_seq
6650 .ok_or(Error::InvalidState)?;
6651
6652 let active_path_id = self.paths.get_active_path_id()?;
6653
6654 if active_path_dcid_seq == dcid_seq &&
6655 self.ids.lowest_available_dcid_seq().is_none() &&
6656 !self
6657 .paths
6658 .iter()
6659 .any(|(pid, p)| pid != active_path_id && p.usable())
6660 {
6661 return Err(Error::OutOfIdentifiers);
6662 }
6663
6664 if let Some(pid) = self.ids.retire_dcid(dcid_seq)? {
6665 // The retired Destination CID was associated to a given path. Let's
6666 // find an available DCID to associate to that path.
6667 let path = self.paths.get_mut(pid)?;
6668 let dcid_seq = self.ids.lowest_available_dcid_seq();
6669
6670 if let Some(dcid_seq) = dcid_seq {
6671 self.ids.link_dcid_to_path_id(dcid_seq, pid)?;
6672 }
6673
6674 path.active_dcid_seq = dcid_seq;
6675 }
6676
6677 Ok(())
6678 }
6679
6680 /// Processes path-specific events.
6681 ///
6682 /// On success it returns a [`PathEvent`], or `None` when there are no
6683 /// events to report. Please refer to [`PathEvent`] for the exhaustive event
6684 /// list.
6685 ///
6686 /// Note that all events are edge-triggered, meaning that once reported they
6687 /// will not be reported again by calling this method again, until the event
6688 /// is re-armed.
6689 ///
6690 /// [`PathEvent`]: enum.PathEvent.html
6691 pub fn path_event_next(&mut self) -> Option<PathEvent> {
6692 self.paths.pop_event()
6693 }
6694
6695 /// Returns the number of source Connection IDs that are retired.
6696 pub fn retired_scids(&self) -> usize {
6697 self.ids.retired_source_cids()
6698 }
6699
6700 /// Returns a source `ConnectionId` that has been retired.
6701 ///
6702 /// On success it returns a [`ConnectionId`], or `None` when there are no
6703 /// more retired connection IDs.
6704 ///
6705 /// [`ConnectionId`]: struct.ConnectionId.html
6706 pub fn retired_scid_next(&mut self) -> Option<ConnectionId<'static>> {
6707 self.ids.pop_retired_scid()
6708 }
6709
6710 /// Returns the number of spare Destination Connection IDs, i.e.,
6711 /// Destination Connection IDs that are still unused.
6712 ///
6713 /// Note that this function returns 0 if the host uses zero length
6714 /// Destination Connection IDs.
6715 pub fn available_dcids(&self) -> usize {
6716 self.ids.available_dcids()
6717 }
6718
6719 /// Returns an iterator over destination `SockAddr`s whose association
6720 /// with `from` forms a known QUIC path on which packets can be sent to.
6721 ///
6722 /// This function is typically used in combination with [`send_on_path()`].
6723 ///
6724 /// Note that the iterator includes all the possible combination of
6725 /// destination `SockAddr`s, even those whose sending is not required now.
6726 /// In other words, this is another way for the application to recall from
6727 /// past [`PathEvent::New`] events.
6728 ///
6729 /// [`PathEvent::New`]: enum.PathEvent.html#variant.New
6730 /// [`send_on_path()`]: struct.Connection.html#method.send_on_path
6731 ///
6732 /// ## Examples:
6733 ///
6734 /// ```no_run
6735 /// # let mut out = [0; 512];
6736 /// # let socket = std::net::UdpSocket::bind("127.0.0.1:0").unwrap();
6737 /// # let mut config = quiche::Config::new(quiche::PROTOCOL_VERSION)?;
6738 /// # let scid = quiche::ConnectionId::from_ref(&[0xba; 16]);
6739 /// # let local = socket.local_addr().unwrap();
6740 /// # let peer = "127.0.0.1:1234".parse().unwrap();
6741 /// # let mut conn = quiche::accept(&scid, None, local, peer, &mut config)?;
6742 /// // Iterate over possible destinations for the given local `SockAddr`.
6743 /// for dest in conn.paths_iter(local) {
6744 /// loop {
6745 /// let (write, send_info) =
6746 /// match conn.send_on_path(&mut out, Some(local), Some(dest)) {
6747 /// Ok(v) => v,
6748 ///
6749 /// Err(quiche::Error::Done) => {
6750 /// // Done writing for this destination.
6751 /// break;
6752 /// },
6753 ///
6754 /// Err(e) => {
6755 /// // An error occurred, handle it.
6756 /// break;
6757 /// },
6758 /// };
6759 ///
6760 /// socket.send_to(&out[..write], &send_info.to).unwrap();
6761 /// }
6762 /// }
6763 /// # Ok::<(), quiche::Error>(())
6764 /// ```
6765 #[inline]
6766 pub fn paths_iter(&self, from: SocketAddr) -> SocketAddrIter {
6767 // Instead of trying to identify whether packets will be sent on the
6768 // given 4-tuple, simply filter paths that cannot be used.
6769 SocketAddrIter {
6770 sockaddrs: self
6771 .paths
6772 .iter()
6773 .filter(|(_, p)| p.active_dcid_seq.is_some())
6774 .filter(|(_, p)| p.usable() || p.probing_required())
6775 .filter(|(_, p)| p.local_addr() == from)
6776 .map(|(_, p)| p.peer_addr())
6777 .collect(),
6778
6779 index: 0,
6780 }
6781 }
6782
6783 /// Closes the connection with the given error and reason.
6784 ///
6785 /// The `app` parameter specifies whether an application close should be
6786 /// sent to the peer. Otherwise a normal connection close is sent.
6787 ///
6788 /// If `app` is true but the connection is not in a state that is safe to
6789 /// send an application error (not established nor in early data), in
6790 /// accordance with [RFC
6791 /// 9000](https://www.rfc-editor.org/rfc/rfc9000.html#section-10.2.3-3), the
6792 /// error code is changed to APPLICATION_ERROR and the reason phrase is
6793 /// cleared.
6794 ///
6795 /// Returns [`Done`] if the connection had already been closed.
6796 ///
6797 /// Note that the connection will not be closed immediately. An application
6798 /// should continue calling the [`recv()`], [`send()`], [`timeout()`] and
6799 /// [`on_timeout()`] methods as normal, until the [`is_closed()`] method
6800 /// returns `true`.
6801 ///
6802 /// [`Done`]: enum.Error.html#variant.Done
6803 /// [`recv()`]: struct.Connection.html#method.recv
6804 /// [`send()`]: struct.Connection.html#method.send
6805 /// [`timeout()`]: struct.Connection.html#method.timeout
6806 /// [`on_timeout()`]: struct.Connection.html#method.on_timeout
6807 /// [`is_closed()`]: struct.Connection.html#method.is_closed
6808 pub fn close(&mut self, app: bool, err: u64, reason: &[u8]) -> Result<()> {
6809 if self.is_closed() || self.is_draining() {
6810 return Err(Error::Done);
6811 }
6812
6813 if self.local_error.is_some() {
6814 return Err(Error::Done);
6815 }
6816
6817 let is_safe_to_send_app_data =
6818 self.is_established() || self.is_in_early_data();
6819
6820 if app && !is_safe_to_send_app_data {
6821 // Clear error information.
6822 self.local_error = Some(ConnectionError {
6823 is_app: false,
6824 error_code: 0x0c,
6825 reason: vec![],
6826 });
6827 } else {
6828 self.local_error = Some(ConnectionError {
6829 is_app: app,
6830 error_code: err,
6831 reason: reason.to_vec(),
6832 });
6833 }
6834
6835 // When no packet was successfully processed close connection immediately.
6836 if self.recv_count == 0 {
6837 self.mark_closed();
6838 }
6839
6840 Ok(())
6841 }
6842
6843 /// Returns a string uniquely representing the connection.
6844 ///
6845 /// This can be used for logging purposes to differentiate between multiple
6846 /// connections.
6847 #[inline]
6848 pub fn trace_id(&self) -> &str {
6849 &self.trace_id
6850 }
6851
6852 /// Returns the negotiated ALPN protocol.
6853 ///
6854 /// If no protocol has been negotiated, the returned value is empty.
6855 #[inline]
6856 pub fn application_proto(&self) -> &[u8] {
6857 self.alpn.as_ref()
6858 }
6859
6860 /// Returns the server name requested by the client.
6861 #[inline]
6862 pub fn server_name(&self) -> Option<&str> {
6863 self.handshake.server_name()
6864 }
6865
6866 /// Returns the peer's leaf certificate (if any) as a DER-encoded buffer.
6867 #[inline]
6868 pub fn peer_cert(&self) -> Option<&[u8]> {
6869 self.handshake.peer_cert()
6870 }
6871
6872 /// Returns the peer's certificate chain (if any) as a vector of DER-encoded
6873 /// buffers.
6874 ///
6875 /// The certificate at index 0 is the peer's leaf certificate, the other
6876 /// certificates (if any) are the chain certificate authorities used to
6877 /// sign the leaf certificate.
6878 #[inline]
6879 pub fn peer_cert_chain(&self) -> Option<Vec<&[u8]>> {
6880 self.handshake.peer_cert_chain()
6881 }
6882
6883 /// Returns the serialized cryptographic session for the connection.
6884 ///
6885 /// This can be used by a client to cache a connection's session, and resume
6886 /// it later using the [`set_session()`] method.
6887 ///
6888 /// [`set_session()`]: struct.Connection.html#method.set_session
6889 #[inline]
6890 pub fn session(&self) -> Option<&[u8]> {
6891 self.session.as_deref()
6892 }
6893
6894 /// Returns the source connection ID.
6895 ///
6896 /// When there are multiple IDs, and if there is an active path, the ID used
6897 /// on that path is returned. Otherwise the oldest ID is returned.
6898 ///
6899 /// Note that the value returned can change throughout the connection's
6900 /// lifetime.
6901 #[inline]
6902 pub fn source_id(&self) -> ConnectionId<'_> {
6903 if let Ok(path) = self.paths.get_active() {
6904 if let Some(active_scid_seq) = path.active_scid_seq {
6905 if let Ok(e) = self.ids.get_scid(active_scid_seq) {
6906 return ConnectionId::from_ref(e.cid.as_ref());
6907 }
6908 }
6909 }
6910
6911 let e = self.ids.oldest_scid();
6912 ConnectionId::from_ref(e.cid.as_ref())
6913 }
6914
6915 /// Returns all active source connection IDs.
6916 ///
6917 /// An iterator is returned for all active IDs (i.e. ones that have not
6918 /// been explicitly retired yet).
6919 #[inline]
6920 pub fn source_ids(&self) -> impl Iterator<Item = &ConnectionId<'_>> {
6921 self.ids.scids_iter()
6922 }
6923
6924 /// Returns the destination connection ID.
6925 ///
6926 /// Note that the value returned can change throughout the connection's
6927 /// lifetime.
6928 #[inline]
6929 pub fn destination_id(&self) -> ConnectionId<'_> {
6930 if let Ok(path) = self.paths.get_active() {
6931 if let Some(active_dcid_seq) = path.active_dcid_seq {
6932 if let Ok(e) = self.ids.get_dcid(active_dcid_seq) {
6933 return ConnectionId::from_ref(e.cid.as_ref());
6934 }
6935 }
6936 }
6937
6938 let e = self.ids.oldest_dcid();
6939 ConnectionId::from_ref(e.cid.as_ref())
6940 }
6941
6942 /// Returns the PMTU for the active path if it exists.
6943 ///
6944 /// This requires no additonal packets to be sent but simply checks if PMTUD
6945 /// has completed and has found a valid PMTU.
6946 #[inline]
6947 pub fn pmtu(&self) -> Option<usize> {
6948 if let Ok(path) = self.paths.get_active() {
6949 path.pmtud.as_ref().and_then(|pmtud| pmtud.get_pmtu())
6950 } else {
6951 None
6952 }
6953 }
6954
6955 /// Revalidates the PMTU for the active path by sending a new probe packet
6956 /// of PMTU size. If the probe is dropped PMTUD will restart and find a new
6957 /// valid PMTU.
6958 #[inline]
6959 pub fn revalidate_pmtu(&mut self) {
6960 if let Ok(active_path) = self.paths.get_active_mut() {
6961 if let Some(pmtud) = active_path.pmtud.as_mut() {
6962 pmtud.revalidate_pmtu();
6963 }
6964 }
6965 }
6966
6967 /// Returns true if the connection handshake is complete.
6968 #[inline]
6969 pub fn is_established(&self) -> bool {
6970 self.handshake_completed
6971 }
6972
6973 /// Returns true if the connection is resumed.
6974 #[inline]
6975 pub fn is_resumed(&self) -> bool {
6976 self.handshake.is_resumed()
6977 }
6978
6979 /// Returns true if the connection has a pending handshake that has
6980 /// progressed enough to send or receive early data.
6981 #[inline]
6982 pub fn is_in_early_data(&self) -> bool {
6983 self.handshake.is_in_early_data()
6984 }
6985
6986 /// Returns whether there is stream or DATAGRAM data available to read.
6987 #[inline]
6988 pub fn is_readable(&self) -> bool {
6989 self.streams.has_readable() || self.dgram_recv_front_len().is_some()
6990 }
6991
6992 /// Returns whether the network path with local address `from` and remote
6993 /// address `peer` has been validated.
6994 ///
6995 /// If the 4-tuple does not exist over the connection, returns an
6996 /// [`InvalidState`].
6997 ///
6998 /// [`InvalidState`]: enum.Error.html#variant.InvalidState
6999 pub fn is_path_validated(
7000 &self, from: SocketAddr, to: SocketAddr,
7001 ) -> Result<bool> {
7002 let pid = self
7003 .paths
7004 .path_id_from_addrs(&(from, to))
7005 .ok_or(Error::InvalidState)?;
7006
7007 Ok(self.paths.get(pid)?.validated())
7008 }
7009
7010 /// Returns true if the connection is draining.
7011 ///
7012 /// If this returns `true`, the connection object cannot yet be dropped, but
7013 /// no new application data can be sent or received. An application should
7014 /// continue calling the [`recv()`], [`timeout()`], and [`on_timeout()`]
7015 /// methods as normal, until the [`is_closed()`] method returns `true`.
7016 ///
7017 /// In contrast, once `is_draining()` returns `true`, calling [`send()`]
7018 /// is not required because no new outgoing packets will be generated.
7019 ///
7020 /// [`recv()`]: struct.Connection.html#method.recv
7021 /// [`send()`]: struct.Connection.html#method.send
7022 /// [`timeout()`]: struct.Connection.html#method.timeout
7023 /// [`on_timeout()`]: struct.Connection.html#method.on_timeout
7024 /// [`is_closed()`]: struct.Connection.html#method.is_closed
7025 #[inline]
7026 pub fn is_draining(&self) -> bool {
7027 self.draining_timer.is_some()
7028 }
7029
7030 /// Returns true if the connection is closed.
7031 ///
7032 /// If this returns true, the connection object can be dropped.
7033 #[inline]
7034 pub fn is_closed(&self) -> bool {
7035 self.closed
7036 }
7037
7038 /// Returns true if the connection was closed due to the idle timeout.
7039 #[inline]
7040 pub fn is_timed_out(&self) -> bool {
7041 self.timed_out
7042 }
7043
7044 /// Returns the error received from the peer, if any.
7045 ///
7046 /// Note that a `Some` return value does not necessarily imply
7047 /// [`is_closed()`] or any other connection state.
7048 ///
7049 /// [`is_closed()`]: struct.Connection.html#method.is_closed
7050 #[inline]
7051 pub fn peer_error(&self) -> Option<&ConnectionError> {
7052 self.peer_error.as_ref()
7053 }
7054
7055 /// Returns the error [`close()`] was called with, or internally
7056 /// created quiche errors, if any.
7057 ///
7058 /// Note that a `Some` return value does not necessarily imply
7059 /// [`is_closed()`] or any other connection state.
7060 /// `Some` also does not guarantee that the error has been sent to
7061 /// or received by the peer.
7062 ///
7063 /// [`close()`]: struct.Connection.html#method.close
7064 /// [`is_closed()`]: struct.Connection.html#method.is_closed
7065 #[inline]
7066 pub fn local_error(&self) -> Option<&ConnectionError> {
7067 self.local_error.as_ref()
7068 }
7069
7070 /// Collects and returns statistics about the connection.
7071 #[inline]
7072 pub fn stats(&self) -> Stats {
7073 Stats {
7074 recv: self.recv_count,
7075 sent: self.sent_count,
7076 lost: self.lost_count,
7077 spurious_lost: self.spurious_lost_count,
7078 retrans: self.retrans_count,
7079 sent_bytes: self.sent_bytes,
7080 recv_bytes: self.recv_bytes,
7081 acked_bytes: self.acked_bytes,
7082 lost_bytes: self.lost_bytes,
7083 stream_retrans_bytes: self.stream_retrans_bytes,
7084 dgram_recv: self.dgram_recv_count,
7085 dgram_sent: self.dgram_sent_count,
7086 paths_count: self.paths.len(),
7087 reset_stream_count_local: self.reset_stream_local_count,
7088 stopped_stream_count_local: self.stopped_stream_local_count,
7089 reset_stream_count_remote: self.reset_stream_remote_count,
7090 stopped_stream_count_remote: self.stopped_stream_remote_count,
7091 data_blocked_sent_count: self.data_blocked_sent_count,
7092 stream_data_blocked_sent_count: self.stream_data_blocked_sent_count,
7093 data_blocked_recv_count: self.data_blocked_recv_count,
7094 stream_data_blocked_recv_count: self.stream_data_blocked_recv_count,
7095 path_challenge_rx_count: self.path_challenge_rx_count,
7096 bytes_in_flight_duration: self.bytes_in_flight_duration(),
7097 tx_buffered_state: self.tx_buffered_state,
7098 }
7099 }
7100
7101 /// Returns the sum of the durations when each path in the
7102 /// connection was actively sending bytes or waiting for acks.
7103 /// Note that this could result in a duration that is longer than
7104 /// the actual connection duration in cases where multiple paths
7105 /// are active for extended periods of time. In practice only 1
7106 /// path is typically active at a time.
7107 /// TODO revisit computation if in the future multiple paths are
7108 /// often active at the same time.
7109 fn bytes_in_flight_duration(&self) -> Duration {
7110 self.paths.iter().fold(Duration::ZERO, |acc, (_, path)| {
7111 acc + path.bytes_in_flight_duration()
7112 })
7113 }
7114
7115 /// Returns reference to peer's transport parameters. Returns `None` if we
7116 /// have not yet processed the peer's transport parameters.
7117 pub fn peer_transport_params(&self) -> Option<&TransportParams> {
7118 if !self.parsed_peer_transport_params {
7119 return None;
7120 }
7121
7122 Some(&self.peer_transport_params)
7123 }
7124
7125 /// Collects and returns statistics about each known path for the
7126 /// connection.
7127 pub fn path_stats(&self) -> impl Iterator<Item = PathStats> + '_ {
7128 self.paths.iter().map(|(_, p)| p.stats())
7129 }
7130
7131 /// Returns whether or not this is a server-side connection.
7132 pub fn is_server(&self) -> bool {
7133 self.is_server
7134 }
7135
7136 fn encode_transport_params(&mut self) -> Result<()> {
7137 self.handshake.set_quic_transport_params(
7138 &self.local_transport_params,
7139 self.is_server,
7140 )
7141 }
7142
7143 fn parse_peer_transport_params(
7144 &mut self, peer_params: TransportParams,
7145 ) -> Result<()> {
7146 // Validate initial_source_connection_id.
7147 match &peer_params.initial_source_connection_id {
7148 Some(v) if v != &self.destination_id() =>
7149 return Err(Error::InvalidTransportParam),
7150
7151 Some(_) => (),
7152
7153 // initial_source_connection_id must be sent by
7154 // both endpoints.
7155 None => return Err(Error::InvalidTransportParam),
7156 }
7157
7158 // Validate original_destination_connection_id.
7159 if let Some(odcid) = &self.odcid {
7160 match &peer_params.original_destination_connection_id {
7161 Some(v) if v != odcid =>
7162 return Err(Error::InvalidTransportParam),
7163
7164 Some(_) => (),
7165
7166 // original_destination_connection_id must be
7167 // sent by the server.
7168 None if !self.is_server =>
7169 return Err(Error::InvalidTransportParam),
7170
7171 None => (),
7172 }
7173 }
7174
7175 // Validate retry_source_connection_id.
7176 if let Some(rscid) = &self.rscid {
7177 match &peer_params.retry_source_connection_id {
7178 Some(v) if v != rscid =>
7179 return Err(Error::InvalidTransportParam),
7180
7181 Some(_) => (),
7182
7183 // retry_source_connection_id must be sent by
7184 // the server.
7185 None => return Err(Error::InvalidTransportParam),
7186 }
7187 }
7188
7189 self.process_peer_transport_params(peer_params)?;
7190
7191 self.parsed_peer_transport_params = true;
7192
7193 Ok(())
7194 }
7195
7196 fn process_peer_transport_params(
7197 &mut self, peer_params: TransportParams,
7198 ) -> Result<()> {
7199 self.max_tx_data = peer_params.initial_max_data;
7200
7201 // Update send capacity.
7202 self.update_tx_cap();
7203
7204 self.streams
7205 .update_peer_max_streams_bidi(peer_params.initial_max_streams_bidi);
7206 self.streams
7207 .update_peer_max_streams_uni(peer_params.initial_max_streams_uni);
7208
7209 let max_ack_delay = Duration::from_millis(peer_params.max_ack_delay);
7210
7211 self.recovery_config.max_ack_delay = max_ack_delay;
7212
7213 let active_path = self.paths.get_active_mut()?;
7214
7215 active_path.recovery.update_max_ack_delay(max_ack_delay);
7216
7217 if active_path
7218 .pmtud
7219 .as_ref()
7220 .map(|pmtud| pmtud.should_probe())
7221 .unwrap_or(false)
7222 {
7223 active_path.recovery.pmtud_update_max_datagram_size(
7224 active_path
7225 .pmtud
7226 .as_mut()
7227 .expect("PMTUD existence verified above")
7228 .get_probe_size()
7229 .min(peer_params.max_udp_payload_size as usize),
7230 );
7231 } else {
7232 active_path.recovery.update_max_datagram_size(
7233 peer_params.max_udp_payload_size as usize,
7234 );
7235 }
7236
7237 // Record the max_active_conn_id parameter advertised by the peer.
7238 self.ids
7239 .set_source_conn_id_limit(peer_params.active_conn_id_limit);
7240
7241 self.peer_transport_params = peer_params;
7242
7243 Ok(())
7244 }
7245
7246 /// Continues the handshake.
7247 ///
7248 /// If the connection is already established, it does nothing.
7249 fn do_handshake(&mut self, now: Instant) -> Result<()> {
7250 let mut ex_data = tls::ExData {
7251 application_protos: &self.application_protos,
7252
7253 crypto_ctx: &mut self.crypto_ctx,
7254
7255 session: &mut self.session,
7256
7257 local_error: &mut self.local_error,
7258
7259 keylog: self.keylog.as_mut(),
7260
7261 trace_id: &self.trace_id,
7262
7263 local_transport_params: self.local_transport_params.clone(),
7264
7265 recovery_config: self.recovery_config,
7266
7267 tx_cap_factor: self.tx_cap_factor,
7268
7269 pmtud: None,
7270
7271 is_server: self.is_server,
7272 };
7273
7274 if self.handshake_completed {
7275 return self.handshake.process_post_handshake(&mut ex_data);
7276 }
7277
7278 match self.handshake.do_handshake(&mut ex_data) {
7279 Ok(_) => (),
7280
7281 Err(Error::Done) => {
7282 // Apply in-handshake configuration from callbacks before any
7283 // packet has been sent.
7284 if self.sent_count == 0 {
7285 if ex_data.recovery_config != self.recovery_config {
7286 if let Ok(path) = self.paths.get_active_mut() {
7287 self.recovery_config = ex_data.recovery_config;
7288 path.reinit_recovery(&self.recovery_config);
7289 }
7290 }
7291
7292 if ex_data.tx_cap_factor != self.tx_cap_factor {
7293 self.tx_cap_factor = ex_data.tx_cap_factor;
7294 }
7295
7296 if let Some(discover) = ex_data.pmtud {
7297 self.paths.set_discover_pmtu_on_existing_paths(
7298 discover,
7299 self.recovery_config.max_send_udp_payload_size,
7300 );
7301 }
7302
7303 if ex_data.local_transport_params !=
7304 self.local_transport_params
7305 {
7306 self.streams.set_max_streams_bidi(
7307 ex_data
7308 .local_transport_params
7309 .initial_max_streams_bidi,
7310 );
7311
7312 self.local_transport_params =
7313 ex_data.local_transport_params;
7314 }
7315 }
7316
7317 // Try to parse transport parameters as soon as the first flight
7318 // of handshake data is processed.
7319 //
7320 // This is potentially dangerous as the handshake hasn't been
7321 // completed yet, though it's required to be able to send data
7322 // in 0.5 RTT.
7323 let raw_params = self.handshake.quic_transport_params();
7324
7325 if !self.parsed_peer_transport_params && !raw_params.is_empty() {
7326 let peer_params = TransportParams::decode(
7327 raw_params,
7328 self.is_server,
7329 self.peer_transport_params_track_unknown,
7330 )?;
7331
7332 self.parse_peer_transport_params(peer_params)?;
7333 }
7334
7335 return Ok(());
7336 },
7337
7338 Err(e) => return Err(e),
7339 };
7340
7341 self.handshake_completed = self.handshake.is_completed();
7342
7343 self.alpn = self.handshake.alpn_protocol().to_vec();
7344
7345 let raw_params = self.handshake.quic_transport_params();
7346
7347 if !self.parsed_peer_transport_params && !raw_params.is_empty() {
7348 let peer_params = TransportParams::decode(
7349 raw_params,
7350 self.is_server,
7351 self.peer_transport_params_track_unknown,
7352 )?;
7353
7354 self.parse_peer_transport_params(peer_params)?;
7355 }
7356
7357 if self.handshake_completed {
7358 // The handshake is considered confirmed at the server when the
7359 // handshake completes, at which point we can also drop the
7360 // handshake epoch.
7361 if self.is_server {
7362 self.handshake_confirmed = true;
7363
7364 self.drop_epoch_state(packet::Epoch::Handshake, now);
7365 }
7366
7367 // Once the handshake is completed there's no point in processing
7368 // 0-RTT packets anymore, so clear the buffer now.
7369 self.undecryptable_pkts.clear();
7370
7371 trace!("{} connection established: proto={:?} cipher={:?} curve={:?} sigalg={:?} resumed={} {:?}",
7372 &self.trace_id,
7373 std::str::from_utf8(self.application_proto()),
7374 self.handshake.cipher(),
7375 self.handshake.curve(),
7376 self.handshake.sigalg(),
7377 self.handshake.is_resumed(),
7378 self.peer_transport_params);
7379 }
7380
7381 Ok(())
7382 }
7383
7384 /// Selects the packet type for the next outgoing packet.
7385 fn write_pkt_type(&self, send_pid: usize) -> Result<Type> {
7386 // On error send packet in the latest epoch available, but only send
7387 // 1-RTT ones when the handshake is completed.
7388 if self
7389 .local_error
7390 .as_ref()
7391 .is_some_and(|conn_err| !conn_err.is_app)
7392 {
7393 let epoch = match self.handshake.write_level() {
7394 crypto::Level::Initial => packet::Epoch::Initial,
7395 crypto::Level::ZeroRTT => unreachable!(),
7396 crypto::Level::Handshake => packet::Epoch::Handshake,
7397 crypto::Level::OneRTT => packet::Epoch::Application,
7398 };
7399
7400 if !self.handshake_confirmed {
7401 match epoch {
7402 // Downgrade the epoch to Handshake as the handshake is not
7403 // completed yet.
7404 packet::Epoch::Application => return Ok(Type::Handshake),
7405
7406 // Downgrade the epoch to Initial as the remote peer might
7407 // not be able to decrypt handshake packets yet.
7408 packet::Epoch::Handshake
7409 if self.crypto_ctx[packet::Epoch::Initial].has_keys() =>
7410 return Ok(Type::Initial),
7411
7412 _ => (),
7413 };
7414 }
7415
7416 return Ok(Type::from_epoch(epoch));
7417 }
7418
7419 for &epoch in packet::Epoch::epochs(
7420 packet::Epoch::Initial..=packet::Epoch::Application,
7421 ) {
7422 let crypto_ctx = &self.crypto_ctx[epoch];
7423 let pkt_space = &self.pkt_num_spaces[epoch];
7424
7425 // Only send packets in a space when we have the send keys for it.
7426 if crypto_ctx.crypto_seal.is_none() {
7427 continue;
7428 }
7429
7430 // We are ready to send data for this packet number space.
7431 if crypto_ctx.data_available() || pkt_space.ready() {
7432 return Ok(Type::from_epoch(epoch));
7433 }
7434
7435 // There are lost frames in this packet number space.
7436 for (_, p) in self.paths.iter() {
7437 if p.recovery.has_lost_frames(epoch) {
7438 return Ok(Type::from_epoch(epoch));
7439 }
7440
7441 // We need to send PTO probe packets.
7442 if p.recovery.loss_probes(epoch) > 0 {
7443 return Ok(Type::from_epoch(epoch));
7444 }
7445 }
7446 }
7447
7448 // If there are flushable, almost full or blocked streams, use the
7449 // Application epoch.
7450 let send_path = self.paths.get(send_pid)?;
7451 if (self.is_established() || self.is_in_early_data()) &&
7452 (self.should_send_handshake_done() ||
7453 self.almost_full ||
7454 self.blocked_limit.is_some() ||
7455 self.dgram_send_queue.has_pending() ||
7456 self.local_error
7457 .as_ref()
7458 .is_some_and(|conn_err| conn_err.is_app) ||
7459 self.streams.should_update_max_streams_bidi() ||
7460 self.streams.should_update_max_streams_uni() ||
7461 self.streams.has_flushable() ||
7462 self.streams.has_almost_full() ||
7463 self.streams.has_blocked() ||
7464 self.streams.has_reset() ||
7465 self.streams.has_stopped() ||
7466 self.ids.has_new_scids() ||
7467 self.ids.has_retire_dcids() ||
7468 send_path
7469 .pmtud
7470 .as_ref()
7471 .is_some_and(|pmtud| pmtud.should_probe()) ||
7472 send_path.needs_ack_eliciting ||
7473 send_path.probing_required())
7474 {
7475 // Only clients can send 0-RTT packets.
7476 if !self.is_server && self.is_in_early_data() {
7477 return Ok(Type::ZeroRTT);
7478 }
7479
7480 return Ok(Type::Short);
7481 }
7482
7483 Err(Error::Done)
7484 }
7485
7486 /// Returns the mutable stream with the given ID if it exists, or creates
7487 /// a new one otherwise.
7488 fn get_or_create_stream(
7489 &mut self, id: u64, local: bool,
7490 ) -> Result<&mut stream::Stream<F>> {
7491 self.streams.get_or_create(
7492 id,
7493 &self.local_transport_params,
7494 &self.peer_transport_params,
7495 local,
7496 self.is_server,
7497 )
7498 }
7499
7500 /// Processes an incoming frame.
7501 fn process_frame(
7502 &mut self, frame: frame::Frame, hdr: &Header, recv_path_id: usize,
7503 epoch: packet::Epoch, now: Instant,
7504 ) -> Result<()> {
7505 trace!("{} rx frm {:?}", self.trace_id, frame);
7506
7507 match frame {
7508 frame::Frame::Padding { .. } => (),
7509
7510 frame::Frame::Ping { .. } => (),
7511
7512 frame::Frame::ACK {
7513 ranges, ack_delay, ..
7514 } => {
7515 let ack_delay = ack_delay
7516 .checked_mul(2_u64.pow(
7517 self.peer_transport_params.ack_delay_exponent as u32,
7518 ))
7519 .ok_or(Error::InvalidFrame)?;
7520
7521 if epoch == packet::Epoch::Handshake ||
7522 (epoch == packet::Epoch::Application &&
7523 self.is_established())
7524 {
7525 self.peer_verified_initial_address = true;
7526 }
7527
7528 let handshake_status = self.handshake_status();
7529
7530 let is_app_limited = self.delivery_rate_check_if_app_limited();
7531
7532 let largest_acked = ranges.last().expect(
7533 "ACK frames should always have at least one ack range",
7534 );
7535
7536 for (_, p) in self.paths.iter_mut() {
7537 if self.pkt_num_spaces[epoch]
7538 .largest_tx_pkt_num
7539 .is_some_and(|largest_sent| largest_sent < largest_acked)
7540 {
7541 // https://www.rfc-editor.org/rfc/rfc9000#section-13.1
7542 // An endpoint SHOULD treat receipt of an acknowledgment
7543 // for a packet it did not send as
7544 // a connection error of type PROTOCOL_VIOLATION
7545 return Err(Error::InvalidAckRange);
7546 }
7547
7548 if is_app_limited {
7549 p.recovery.delivery_rate_update_app_limited(true);
7550 }
7551
7552 let OnAckReceivedOutcome {
7553 lost_packets,
7554 lost_bytes,
7555 acked_bytes,
7556 spurious_losses,
7557 } = p.recovery.on_ack_received(
7558 &ranges,
7559 ack_delay,
7560 epoch,
7561 handshake_status,
7562 now,
7563 self.pkt_num_manager.skip_pn(),
7564 &self.trace_id,
7565 )?;
7566
7567 let skip_pn = self.pkt_num_manager.skip_pn();
7568 let largest_acked =
7569 p.recovery.get_largest_acked_on_epoch(epoch);
7570
7571 // Consider the skip_pn validated if the peer has sent an ack
7572 // for a larger pkt number.
7573 if let Some((largest_acked, skip_pn)) =
7574 largest_acked.zip(skip_pn)
7575 {
7576 if largest_acked > skip_pn {
7577 self.pkt_num_manager.set_skip_pn(None);
7578 }
7579 }
7580
7581 self.lost_count += lost_packets;
7582 self.lost_bytes += lost_bytes as u64;
7583 self.acked_bytes += acked_bytes as u64;
7584 self.spurious_lost_count += spurious_losses;
7585 }
7586 },
7587
7588 frame::Frame::ResetStream {
7589 stream_id,
7590 error_code,
7591 final_size,
7592 } => {
7593 // Peer can't send on our unidirectional streams.
7594 if !stream::is_bidi(stream_id) &&
7595 stream::is_local(stream_id, self.is_server)
7596 {
7597 return Err(Error::InvalidStreamState(stream_id));
7598 }
7599
7600 let max_rx_data_left = self.max_rx_data() - self.rx_data;
7601
7602 // Get existing stream or create a new one, but if the stream
7603 // has already been closed and collected, ignore the frame.
7604 //
7605 // This can happen if e.g. an ACK frame is lost, and the peer
7606 // retransmits another frame before it realizes that the stream
7607 // is gone.
7608 //
7609 // Note that it makes it impossible to check if the frame is
7610 // illegal, since we have no state, but since we ignore the
7611 // frame, it should be fine.
7612 let stream = match self.get_or_create_stream(stream_id, false) {
7613 Ok(v) => v,
7614
7615 Err(Error::Done) => return Ok(()),
7616
7617 Err(e) => return Err(e),
7618 };
7619
7620 let was_readable = stream.is_readable();
7621 let priority_key = Arc::clone(&stream.priority_key);
7622
7623 let stream::RecvBufResetReturn {
7624 max_data_delta,
7625 consumed_flowcontrol,
7626 } = stream.recv.reset(error_code, final_size)?;
7627
7628 if max_data_delta > max_rx_data_left {
7629 return Err(Error::FlowControl);
7630 }
7631
7632 if !was_readable && stream.is_readable() {
7633 self.streams.insert_readable(&priority_key);
7634 }
7635
7636 self.rx_data += max_data_delta;
7637 // We dropped the receive buffer, return connection level
7638 // flow-control
7639 self.flow_control.add_consumed(consumed_flowcontrol);
7640
7641 // ... and check if need to send an updated MAX_DATA frame
7642 if self.should_update_max_data() {
7643 self.almost_full = true;
7644 }
7645
7646 self.reset_stream_remote_count =
7647 self.reset_stream_remote_count.saturating_add(1);
7648 },
7649
7650 frame::Frame::StopSending {
7651 stream_id,
7652 error_code,
7653 } => {
7654 // STOP_SENDING on a receive-only stream is a fatal error.
7655 if !stream::is_local(stream_id, self.is_server) &&
7656 !stream::is_bidi(stream_id)
7657 {
7658 return Err(Error::InvalidStreamState(stream_id));
7659 }
7660
7661 // Get existing stream or create a new one, but if the stream
7662 // has already been closed and collected, ignore the frame.
7663 //
7664 // This can happen if e.g. an ACK frame is lost, and the peer
7665 // retransmits another frame before it realizes that the stream
7666 // is gone.
7667 //
7668 // Note that it makes it impossible to check if the frame is
7669 // illegal, since we have no state, but since we ignore the
7670 // frame, it should be fine.
7671 let stream = match self.get_or_create_stream(stream_id, false) {
7672 Ok(v) => v,
7673
7674 Err(Error::Done) => return Ok(()),
7675
7676 Err(e) => return Err(e),
7677 };
7678
7679 let was_writable = stream.is_writable();
7680
7681 let priority_key = Arc::clone(&stream.priority_key);
7682
7683 // Try stopping the stream.
7684 if let Ok((final_size, unsent)) = stream.send.stop(error_code) {
7685 // Claw back some flow control allowance from data that was
7686 // buffered but not actually sent before the stream was
7687 // reset.
7688 //
7689 // Note that `tx_cap` will be updated later on, so no need
7690 // to touch it here.
7691 self.tx_data = self.tx_data.saturating_sub(unsent);
7692
7693 self.tx_buffered =
7694 self.tx_buffered.saturating_sub(unsent as usize);
7695
7696 // These drops in qlog are a bit weird, but the only way to
7697 // ensure that all bytes that are moved from App to Transport
7698 // in stream_do_send are eventually moved from Transport to
7699 // Dropped. Ideally we would add a Transport to Network
7700 // transition also as a way to indicate when bytes were
7701 // transmitted vs dropped without ever being sent.
7702 qlog_with_type!(QLOG_DATA_MV, self.qlog, q, {
7703 let ev_data =
7704 EventData::DataMoved(qlog::events::quic::DataMoved {
7705 stream_id: Some(stream_id),
7706 offset: Some(final_size),
7707 length: Some(unsent),
7708 from: Some(DataRecipient::Transport),
7709 to: Some(DataRecipient::Dropped),
7710 ..Default::default()
7711 });
7712
7713 q.add_event_data_with_instant(ev_data, now).ok();
7714 });
7715
7716 self.streams.insert_reset(stream_id, error_code, final_size);
7717
7718 if !was_writable {
7719 self.streams.insert_writable(&priority_key);
7720 }
7721
7722 self.stopped_stream_remote_count =
7723 self.stopped_stream_remote_count.saturating_add(1);
7724 self.reset_stream_local_count =
7725 self.reset_stream_local_count.saturating_add(1);
7726 }
7727 },
7728
7729 frame::Frame::Crypto { data } => {
7730 if data.max_off() >= MAX_CRYPTO_STREAM_OFFSET {
7731 return Err(Error::CryptoBufferExceeded);
7732 }
7733
7734 // Push the data to the stream so it can be re-ordered.
7735 self.crypto_ctx[epoch].crypto_stream.recv.write(data)?;
7736
7737 // Feed crypto data to the TLS state, if there's data
7738 // available at the expected offset.
7739 let mut crypto_buf = [0; 512];
7740
7741 let level = crypto::Level::from_epoch(epoch);
7742
7743 let stream = &mut self.crypto_ctx[epoch].crypto_stream;
7744
7745 while let Ok((read, _)) = stream.recv.emit(&mut crypto_buf) {
7746 let recv_buf = &crypto_buf[..read];
7747 self.handshake.provide_data(level, recv_buf)?;
7748 }
7749
7750 self.do_handshake(now)?;
7751 },
7752
7753 frame::Frame::CryptoHeader { .. } => unreachable!(),
7754
7755 // TODO: implement stateless retry
7756 frame::Frame::NewToken { .. } =>
7757 if self.is_server {
7758 return Err(Error::InvalidPacket);
7759 },
7760
7761 frame::Frame::Stream { stream_id, data } => {
7762 // Peer can't send on our unidirectional streams.
7763 if !stream::is_bidi(stream_id) &&
7764 stream::is_local(stream_id, self.is_server)
7765 {
7766 return Err(Error::InvalidStreamState(stream_id));
7767 }
7768
7769 let max_rx_data_left = self.max_rx_data() - self.rx_data;
7770
7771 // Get existing stream or create a new one, but if the stream
7772 // has already been closed and collected, ignore the frame.
7773 //
7774 // This can happen if e.g. an ACK frame is lost, and the peer
7775 // retransmits another frame before it realizes that the stream
7776 // is gone.
7777 //
7778 // Note that it makes it impossible to check if the frame is
7779 // illegal, since we have no state, but since we ignore the
7780 // frame, it should be fine.
7781 let stream = match self.get_or_create_stream(stream_id, false) {
7782 Ok(v) => v,
7783
7784 Err(Error::Done) => return Ok(()),
7785
7786 Err(e) => return Err(e),
7787 };
7788
7789 // Check for the connection-level flow control limit.
7790 let max_off_delta =
7791 data.max_off().saturating_sub(stream.recv.max_off());
7792
7793 if max_off_delta > max_rx_data_left {
7794 return Err(Error::FlowControl);
7795 }
7796
7797 let was_readable = stream.is_readable();
7798 let priority_key = Arc::clone(&stream.priority_key);
7799
7800 let was_draining = stream.recv.is_draining();
7801
7802 stream.recv.write(data)?;
7803
7804 if !was_readable && stream.is_readable() {
7805 self.streams.insert_readable(&priority_key);
7806 }
7807
7808 self.rx_data += max_off_delta;
7809
7810 if was_draining {
7811 // When a stream is in draining state it will not queue
7812 // incoming data for the application to read, so consider
7813 // the received data as consumed, which might trigger a flow
7814 // control update.
7815 self.flow_control.add_consumed(max_off_delta);
7816
7817 if self.should_update_max_data() {
7818 self.almost_full = true;
7819 }
7820 }
7821 },
7822
7823 frame::Frame::StreamHeader { .. } => unreachable!(),
7824
7825 frame::Frame::MaxData { max } => {
7826 self.max_tx_data = cmp::max(self.max_tx_data, max);
7827 },
7828
7829 frame::Frame::MaxStreamData { stream_id, max } => {
7830 // Peer can't receive on its own unidirectional streams.
7831 if !stream::is_bidi(stream_id) &&
7832 !stream::is_local(stream_id, self.is_server)
7833 {
7834 return Err(Error::InvalidStreamState(stream_id));
7835 }
7836
7837 // Get existing stream or create a new one, but if the stream
7838 // has already been closed and collected, ignore the frame.
7839 //
7840 // This can happen if e.g. an ACK frame is lost, and the peer
7841 // retransmits another frame before it realizes that the stream
7842 // is gone.
7843 //
7844 // Note that it makes it impossible to check if the frame is
7845 // illegal, since we have no state, but since we ignore the
7846 // frame, it should be fine.
7847 let stream = match self.get_or_create_stream(stream_id, false) {
7848 Ok(v) => v,
7849
7850 Err(Error::Done) => return Ok(()),
7851
7852 Err(e) => return Err(e),
7853 };
7854
7855 let was_flushable = stream.is_flushable();
7856
7857 stream.send.update_max_data(max);
7858
7859 let writable = stream.is_writable();
7860
7861 let priority_key = Arc::clone(&stream.priority_key);
7862
7863 // If the stream is now flushable push it to the flushable queue,
7864 // but only if it wasn't already queued.
7865 if stream.is_flushable() && !was_flushable {
7866 let priority_key = Arc::clone(&stream.priority_key);
7867 self.streams.insert_flushable(&priority_key);
7868 }
7869
7870 if writable {
7871 self.streams.insert_writable(&priority_key);
7872 }
7873 },
7874
7875 frame::Frame::MaxStreamsBidi { max } => {
7876 if max > MAX_STREAM_ID {
7877 return Err(Error::InvalidFrame);
7878 }
7879
7880 self.streams.update_peer_max_streams_bidi(max);
7881 },
7882
7883 frame::Frame::MaxStreamsUni { max } => {
7884 if max > MAX_STREAM_ID {
7885 return Err(Error::InvalidFrame);
7886 }
7887
7888 self.streams.update_peer_max_streams_uni(max);
7889 },
7890
7891 frame::Frame::DataBlocked { .. } => {
7892 self.data_blocked_recv_count =
7893 self.data_blocked_recv_count.saturating_add(1);
7894 },
7895
7896 frame::Frame::StreamDataBlocked { .. } => {
7897 self.stream_data_blocked_recv_count =
7898 self.stream_data_blocked_recv_count.saturating_add(1);
7899 },
7900
7901 frame::Frame::StreamsBlockedBidi { limit } => {
7902 if limit > MAX_STREAM_ID {
7903 return Err(Error::InvalidFrame);
7904 }
7905 },
7906
7907 frame::Frame::StreamsBlockedUni { limit } => {
7908 if limit > MAX_STREAM_ID {
7909 return Err(Error::InvalidFrame);
7910 }
7911 },
7912
7913 frame::Frame::NewConnectionId {
7914 seq_num,
7915 retire_prior_to,
7916 conn_id,
7917 reset_token,
7918 } => {
7919 if self.ids.zero_length_dcid() {
7920 return Err(Error::InvalidState);
7921 }
7922
7923 let mut retired_path_ids = SmallVec::new();
7924
7925 // Retire pending path IDs before propagating the error code to
7926 // make sure retired connection IDs are not in use anymore.
7927 let new_dcid_res = self.ids.new_dcid(
7928 conn_id.into(),
7929 seq_num,
7930 u128::from_be_bytes(reset_token),
7931 retire_prior_to,
7932 &mut retired_path_ids,
7933 );
7934
7935 for (dcid_seq, pid) in retired_path_ids {
7936 let path = self.paths.get_mut(pid)?;
7937
7938 // Maybe the path already switched to another DCID.
7939 if path.active_dcid_seq != Some(dcid_seq) {
7940 continue;
7941 }
7942
7943 if let Some(new_dcid_seq) =
7944 self.ids.lowest_available_dcid_seq()
7945 {
7946 path.active_dcid_seq = Some(new_dcid_seq);
7947
7948 self.ids.link_dcid_to_path_id(new_dcid_seq, pid)?;
7949
7950 trace!(
7951 "{} path ID {} changed DCID: old seq num {} new seq num {}",
7952 self.trace_id, pid, dcid_seq, new_dcid_seq,
7953 );
7954 } else {
7955 // We cannot use this path anymore for now.
7956 path.active_dcid_seq = None;
7957
7958 trace!(
7959 "{} path ID {} cannot be used; DCID seq num {} has been retired",
7960 self.trace_id, pid, dcid_seq,
7961 );
7962 }
7963 }
7964
7965 // Propagate error (if any) now...
7966 new_dcid_res?;
7967 },
7968
7969 frame::Frame::RetireConnectionId { seq_num } => {
7970 if self.ids.zero_length_scid() {
7971 return Err(Error::InvalidState);
7972 }
7973
7974 if let Some(pid) = self.ids.retire_scid(seq_num, &hdr.dcid)? {
7975 let path = self.paths.get_mut(pid)?;
7976
7977 // Maybe we already linked a new SCID to that path.
7978 if path.active_scid_seq == Some(seq_num) {
7979 // XXX: We do not remove unused paths now, we instead
7980 // wait until we need to maintain more paths than the
7981 // host is willing to.
7982 path.active_scid_seq = None;
7983 }
7984 }
7985 },
7986
7987 frame::Frame::PathChallenge { data } => {
7988 self.path_challenge_rx_count += 1;
7989
7990 self.paths
7991 .get_mut(recv_path_id)?
7992 .on_challenge_received(data);
7993 },
7994
7995 frame::Frame::PathResponse { data } => {
7996 self.paths.on_response_received(data)?;
7997 },
7998
7999 frame::Frame::ConnectionClose {
8000 error_code, reason, ..
8001 } => {
8002 self.peer_error = Some(ConnectionError {
8003 is_app: false,
8004 error_code,
8005 reason,
8006 });
8007
8008 let path = self.paths.get_active()?;
8009 self.draining_timer = Some(now + (path.recovery.pto() * 3));
8010 },
8011
8012 frame::Frame::ApplicationClose { error_code, reason } => {
8013 self.peer_error = Some(ConnectionError {
8014 is_app: true,
8015 error_code,
8016 reason,
8017 });
8018
8019 let path = self.paths.get_active()?;
8020 self.draining_timer = Some(now + (path.recovery.pto() * 3));
8021 },
8022
8023 frame::Frame::HandshakeDone => {
8024 if self.is_server {
8025 return Err(Error::InvalidPacket);
8026 }
8027
8028 self.peer_verified_initial_address = true;
8029
8030 self.handshake_confirmed = true;
8031
8032 // Once the handshake is confirmed, we can drop Handshake keys.
8033 self.drop_epoch_state(packet::Epoch::Handshake, now);
8034 },
8035
8036 frame::Frame::Datagram { data } => {
8037 // Close the connection if DATAGRAMs are not enabled.
8038 // quiche always advertises support for 64K sized DATAGRAM
8039 // frames, as recommended by the standard, so we don't need a
8040 // size check.
8041 if !self.dgram_enabled() {
8042 return Err(Error::InvalidState);
8043 }
8044
8045 // If recv queue is full, discard oldest
8046 if self.dgram_recv_queue.is_full() {
8047 self.dgram_recv_queue.pop();
8048 }
8049
8050 self.dgram_recv_queue.push(data)?;
8051
8052 self.dgram_recv_count = self.dgram_recv_count.saturating_add(1);
8053
8054 let path = self.paths.get_mut(recv_path_id)?;
8055 path.dgram_recv_count = path.dgram_recv_count.saturating_add(1);
8056 },
8057
8058 frame::Frame::DatagramHeader { .. } => unreachable!(),
8059 }
8060
8061 Ok(())
8062 }
8063
8064 /// Drops the keys and recovery state for the given epoch.
8065 fn drop_epoch_state(&mut self, epoch: packet::Epoch, now: Instant) {
8066 let crypto_ctx = &mut self.crypto_ctx[epoch];
8067 if crypto_ctx.crypto_open.is_none() {
8068 return;
8069 }
8070 crypto_ctx.clear();
8071 self.pkt_num_spaces[epoch].clear();
8072
8073 let handshake_status = self.handshake_status();
8074 for (_, p) in self.paths.iter_mut() {
8075 p.recovery
8076 .on_pkt_num_space_discarded(epoch, handshake_status, now);
8077 }
8078
8079 trace!("{} dropped epoch {} state", self.trace_id, epoch);
8080 }
8081
8082 /// Returns true if the connection-level flow control needs to be updated.
8083 ///
8084 /// This happens when the new max data limit is at least double the amount
8085 /// of data that can be received before blocking.
8086 fn should_update_max_data(&self) -> bool {
8087 self.flow_control.should_update_max_data()
8088 }
8089
8090 /// Returns the connection level flow control limit.
8091 fn max_rx_data(&self) -> u64 {
8092 self.flow_control.max_data()
8093 }
8094
8095 /// Returns true if the HANDSHAKE_DONE frame needs to be sent.
8096 fn should_send_handshake_done(&self) -> bool {
8097 self.is_established() && !self.handshake_done_sent && self.is_server
8098 }
8099
8100 /// Returns the idle timeout value.
8101 ///
8102 /// `None` is returned if both end-points disabled the idle timeout.
8103 fn idle_timeout(&self) -> Option<Duration> {
8104 // If the transport parameter is set to 0, then the respective endpoint
8105 // decided to disable the idle timeout. If both are disabled we should
8106 // not set any timeout.
8107 if self.local_transport_params.max_idle_timeout == 0 &&
8108 self.peer_transport_params.max_idle_timeout == 0
8109 {
8110 return None;
8111 }
8112
8113 // If the local endpoint or the peer disabled the idle timeout, use the
8114 // other peer's value, otherwise use the minimum of the two values.
8115 let idle_timeout = if self.local_transport_params.max_idle_timeout == 0 {
8116 self.peer_transport_params.max_idle_timeout
8117 } else if self.peer_transport_params.max_idle_timeout == 0 {
8118 self.local_transport_params.max_idle_timeout
8119 } else {
8120 cmp::min(
8121 self.local_transport_params.max_idle_timeout,
8122 self.peer_transport_params.max_idle_timeout,
8123 )
8124 };
8125
8126 let path_pto = match self.paths.get_active() {
8127 Ok(p) => p.recovery.pto(),
8128 Err(_) => Duration::ZERO,
8129 };
8130
8131 let idle_timeout = Duration::from_millis(idle_timeout);
8132 let idle_timeout = cmp::max(idle_timeout, 3 * path_pto);
8133
8134 Some(idle_timeout)
8135 }
8136
8137 /// Returns the connection's handshake status for use in loss recovery.
8138 fn handshake_status(&self) -> recovery::HandshakeStatus {
8139 recovery::HandshakeStatus {
8140 has_handshake_keys: self.crypto_ctx[packet::Epoch::Handshake]
8141 .has_keys(),
8142
8143 peer_verified_address: self.peer_verified_initial_address,
8144
8145 completed: self.is_established(),
8146 }
8147 }
8148
8149 /// Updates send capacity.
8150 fn update_tx_cap(&mut self) {
8151 let cwin_available = match self.paths.get_active() {
8152 Ok(p) => p.recovery.cwnd_available() as u64,
8153 Err(_) => 0,
8154 };
8155
8156 let cap =
8157 cmp::min(cwin_available, self.max_tx_data - self.tx_data) as usize;
8158 self.tx_cap = (cap as f64 * self.tx_cap_factor).ceil() as usize;
8159 }
8160
8161 fn delivery_rate_check_if_app_limited(&self) -> bool {
8162 // Enter the app-limited phase of delivery rate when these conditions
8163 // are met:
8164 //
8165 // - The remaining capacity is higher than available bytes in cwnd (there
8166 // is more room to send).
8167 // - New data since the last send() is smaller than available bytes in
8168 // cwnd (we queued less than what we can send).
8169 // - There is room to send more data in cwnd.
8170 //
8171 // In application-limited phases the transmission rate is limited by the
8172 // application rather than the congestion control algorithm.
8173 //
8174 // Note that this is equivalent to CheckIfApplicationLimited() from the
8175 // delivery rate draft. This is also separate from `recovery.app_limited`
8176 // and only applies to delivery rate calculation.
8177 let cwin_available = self
8178 .paths
8179 .iter()
8180 .filter(|&(_, p)| p.active())
8181 .map(|(_, p)| p.recovery.cwnd_available())
8182 .sum();
8183
8184 ((self.tx_buffered + self.dgram_send_queue_byte_size()) < cwin_available) &&
8185 (self.tx_data.saturating_sub(self.last_tx_data)) <
8186 cwin_available as u64 &&
8187 cwin_available > 0
8188 }
8189
8190 fn check_tx_buffered_invariant(&mut self) {
8191 // tx_buffered should track bytes queued in the stream buffers
8192 // and unacked retransmitable bytes in the network.
8193 // If tx_buffered > 0 mark the tx_buffered_state if there are no
8194 // flushable streams and there no inflight bytes.
8195 //
8196 // It is normal to have tx_buffered == 0 while there are inflight bytes
8197 // since not QUIC frames are retransmittable; inflight tracks all bytes
8198 // on the network which are subject to congestion control.
8199 if self.tx_buffered > 0 &&
8200 !self.streams.has_flushable() &&
8201 !self
8202 .paths
8203 .iter()
8204 .any(|(_, p)| p.recovery.bytes_in_flight() > 0)
8205 {
8206 self.tx_buffered_state = TxBufferTrackingState::Inconsistent;
8207 }
8208 }
8209
8210 fn set_initial_dcid(
8211 &mut self, cid: ConnectionId<'static>, reset_token: Option<u128>,
8212 path_id: usize,
8213 ) -> Result<()> {
8214 self.ids.set_initial_dcid(cid, reset_token, Some(path_id));
8215 self.paths.get_mut(path_id)?.active_dcid_seq = Some(0);
8216
8217 Ok(())
8218 }
8219
8220 /// Selects the path that the incoming packet belongs to, or creates a new
8221 /// one if no existing path matches.
8222 fn get_or_create_recv_path_id(
8223 &mut self, recv_pid: Option<usize>, dcid: &ConnectionId, buf_len: usize,
8224 info: &RecvInfo,
8225 ) -> Result<usize> {
8226 let ids = &mut self.ids;
8227
8228 let (in_scid_seq, mut in_scid_pid) =
8229 ids.find_scid_seq(dcid).ok_or(Error::InvalidState)?;
8230
8231 if let Some(recv_pid) = recv_pid {
8232 // If the path observes a change of SCID used, note it.
8233 let recv_path = self.paths.get_mut(recv_pid)?;
8234
8235 let cid_entry =
8236 recv_path.active_scid_seq.and_then(|v| ids.get_scid(v).ok());
8237
8238 if cid_entry.map(|e| &e.cid) != Some(dcid) {
8239 let incoming_cid_entry = ids.get_scid(in_scid_seq)?;
8240
8241 let prev_recv_pid =
8242 incoming_cid_entry.path_id.unwrap_or(recv_pid);
8243
8244 if prev_recv_pid != recv_pid {
8245 trace!(
8246 "{} peer reused CID {:?} from path {} on path {}",
8247 self.trace_id,
8248 dcid,
8249 prev_recv_pid,
8250 recv_pid
8251 );
8252
8253 // TODO: reset congestion control.
8254 }
8255
8256 trace!(
8257 "{} path ID {} now see SCID with seq num {}",
8258 self.trace_id,
8259 recv_pid,
8260 in_scid_seq
8261 );
8262
8263 recv_path.active_scid_seq = Some(in_scid_seq);
8264 ids.link_scid_to_path_id(in_scid_seq, recv_pid)?;
8265 }
8266
8267 return Ok(recv_pid);
8268 }
8269
8270 // This is a new 4-tuple. See if the CID has not been assigned on
8271 // another path.
8272
8273 // Ignore this step if are using zero-length SCID.
8274 if ids.zero_length_scid() {
8275 in_scid_pid = None;
8276 }
8277
8278 if let Some(in_scid_pid) = in_scid_pid {
8279 // This CID has been used by another path. If we have the
8280 // room to do so, create a new `Path` structure holding this
8281 // new 4-tuple. Otherwise, drop the packet.
8282 let old_path = self.paths.get_mut(in_scid_pid)?;
8283 let old_local_addr = old_path.local_addr();
8284 let old_peer_addr = old_path.peer_addr();
8285
8286 trace!(
8287 "{} reused CID seq {} of ({},{}) (path {}) on ({},{})",
8288 self.trace_id,
8289 in_scid_seq,
8290 old_local_addr,
8291 old_peer_addr,
8292 in_scid_pid,
8293 info.to,
8294 info.from
8295 );
8296
8297 // Notify the application.
8298 self.paths.notify_event(PathEvent::ReusedSourceConnectionId(
8299 in_scid_seq,
8300 (old_local_addr, old_peer_addr),
8301 (info.to, info.from),
8302 ));
8303 }
8304
8305 // This is a new path using an unassigned CID; create it!
8306 let mut path = path::Path::new(
8307 info.to,
8308 info.from,
8309 &self.recovery_config,
8310 self.path_challenge_recv_max_queue_len,
8311 false,
8312 None,
8313 );
8314
8315 path.max_send_bytes = buf_len * self.max_amplification_factor;
8316 path.active_scid_seq = Some(in_scid_seq);
8317
8318 // Automatically probes the new path.
8319 path.request_validation();
8320
8321 let pid = self.paths.insert_path(path, self.is_server)?;
8322
8323 // Do not record path reuse.
8324 if in_scid_pid.is_none() {
8325 ids.link_scid_to_path_id(in_scid_seq, pid)?;
8326 }
8327
8328 Ok(pid)
8329 }
8330
8331 /// Selects the path on which the next packet must be sent.
8332 fn get_send_path_id(
8333 &self, from: Option<SocketAddr>, to: Option<SocketAddr>,
8334 ) -> Result<usize> {
8335 // A probing packet must be sent, but only if the connection is fully
8336 // established.
8337 if self.is_established() {
8338 let mut probing = self
8339 .paths
8340 .iter()
8341 .filter(|(_, p)| from.is_none() || Some(p.local_addr()) == from)
8342 .filter(|(_, p)| to.is_none() || Some(p.peer_addr()) == to)
8343 .filter(|(_, p)| p.active_dcid_seq.is_some())
8344 .filter(|(_, p)| p.probing_required())
8345 .map(|(pid, _)| pid);
8346
8347 if let Some(pid) = probing.next() {
8348 return Ok(pid);
8349 }
8350 }
8351
8352 if let Some((pid, p)) = self.paths.get_active_with_pid() {
8353 if from.is_some() && Some(p.local_addr()) != from {
8354 return Err(Error::Done);
8355 }
8356
8357 if to.is_some() && Some(p.peer_addr()) != to {
8358 return Err(Error::Done);
8359 }
8360
8361 return Ok(pid);
8362 };
8363
8364 Err(Error::InvalidState)
8365 }
8366
8367 /// Sets the path with identifier 'path_id' to be active.
8368 fn set_active_path(&mut self, path_id: usize, now: Instant) -> Result<()> {
8369 if let Ok(old_active_path) = self.paths.get_active_mut() {
8370 for &e in packet::Epoch::epochs(
8371 packet::Epoch::Initial..=packet::Epoch::Application,
8372 ) {
8373 let (lost_packets, lost_bytes) = old_active_path
8374 .recovery
8375 .on_path_change(e, now, &self.trace_id);
8376
8377 self.lost_count += lost_packets;
8378 self.lost_bytes += lost_bytes as u64;
8379 }
8380 }
8381
8382 self.paths.set_active_path(path_id)
8383 }
8384
8385 /// Handles potential connection migration.
8386 fn on_peer_migrated(
8387 &mut self, new_pid: usize, disable_dcid_reuse: bool, now: Instant,
8388 ) -> Result<()> {
8389 let active_path_id = self.paths.get_active_path_id()?;
8390
8391 if active_path_id == new_pid {
8392 return Ok(());
8393 }
8394
8395 self.set_active_path(new_pid, now)?;
8396
8397 let no_spare_dcid =
8398 self.paths.get_mut(new_pid)?.active_dcid_seq.is_none();
8399
8400 if no_spare_dcid && !disable_dcid_reuse {
8401 self.paths.get_mut(new_pid)?.active_dcid_seq =
8402 self.paths.get_mut(active_path_id)?.active_dcid_seq;
8403 }
8404
8405 Ok(())
8406 }
8407
8408 /// Creates a new client-side path.
8409 fn create_path_on_client(
8410 &mut self, local_addr: SocketAddr, peer_addr: SocketAddr,
8411 ) -> Result<usize> {
8412 if self.is_server {
8413 return Err(Error::InvalidState);
8414 }
8415
8416 // If we use zero-length SCID and go over our local active CID limit,
8417 // the `insert_path()` call will raise an error.
8418 if !self.ids.zero_length_scid() && self.ids.available_scids() == 0 {
8419 return Err(Error::OutOfIdentifiers);
8420 }
8421
8422 // Do we have a spare DCID? If we are using zero-length DCID, just use
8423 // the default having sequence 0 (note that if we exceed our local CID
8424 // limit, the `insert_path()` call will raise an error.
8425 let dcid_seq = if self.ids.zero_length_dcid() {
8426 0
8427 } else {
8428 self.ids
8429 .lowest_available_dcid_seq()
8430 .ok_or(Error::OutOfIdentifiers)?
8431 };
8432
8433 let mut path = path::Path::new(
8434 local_addr,
8435 peer_addr,
8436 &self.recovery_config,
8437 self.path_challenge_recv_max_queue_len,
8438 false,
8439 None,
8440 );
8441 path.active_dcid_seq = Some(dcid_seq);
8442
8443 let pid = self
8444 .paths
8445 .insert_path(path, false)
8446 .map_err(|_| Error::OutOfIdentifiers)?;
8447 self.ids.link_dcid_to_path_id(dcid_seq, pid)?;
8448
8449 Ok(pid)
8450 }
8451
8452 // Marks the connection as closed and does any related tidyup.
8453 fn mark_closed(&mut self) {
8454 #[cfg(feature = "qlog")]
8455 {
8456 let cc = match (self.is_established(), self.timed_out, &self.peer_error, &self.local_error) {
8457 (false, _, _, _) => qlog::events::connectivity::ConnectionClosed {
8458 owner: Some(TransportOwner::Local),
8459 connection_code: None,
8460 application_code: None,
8461 internal_code: None,
8462 reason: Some("Failed to establish connection".to_string()),
8463 trigger: Some(qlog::events::connectivity::ConnectionClosedTrigger::HandshakeTimeout)
8464 },
8465
8466 (true, true, _, _) => qlog::events::connectivity::ConnectionClosed {
8467 owner: Some(TransportOwner::Local),
8468 connection_code: None,
8469 application_code: None,
8470 internal_code: None,
8471 reason: Some("Idle timeout".to_string()),
8472 trigger: Some(qlog::events::connectivity::ConnectionClosedTrigger::IdleTimeout)
8473 },
8474
8475 (true, false, Some(peer_error), None) => {
8476 let (connection_code, application_code, trigger) = if peer_error.is_app {
8477 (None, Some(qlog::events::ApplicationErrorCode::Value(peer_error.error_code)), None)
8478 } else {
8479 let trigger = if peer_error.error_code == WireErrorCode::NoError as u64 {
8480 Some(qlog::events::connectivity::ConnectionClosedTrigger::Clean)
8481 } else {
8482 Some(qlog::events::connectivity::ConnectionClosedTrigger::Error)
8483 };
8484
8485 (Some(qlog::events::ConnectionErrorCode::Value(peer_error.error_code)), None, trigger)
8486 };
8487
8488 qlog::events::connectivity::ConnectionClosed {
8489 owner: Some(TransportOwner::Remote),
8490 connection_code,
8491 application_code,
8492 internal_code: None,
8493 reason: Some(String::from_utf8_lossy(&peer_error.reason).to_string()),
8494 trigger,
8495 }
8496 },
8497
8498 (true, false, None, Some(local_error)) => {
8499 let (connection_code, application_code, trigger) = if local_error.is_app {
8500 (None, Some(qlog::events::ApplicationErrorCode::Value(local_error.error_code)), None)
8501 } else {
8502 let trigger = if local_error.error_code == WireErrorCode::NoError as u64 {
8503 Some(qlog::events::connectivity::ConnectionClosedTrigger::Clean)
8504 } else {
8505 Some(qlog::events::connectivity::ConnectionClosedTrigger::Error)
8506 };
8507
8508 (Some(qlog::events::ConnectionErrorCode::Value(local_error.error_code)), None, trigger)
8509 };
8510
8511 qlog::events::connectivity::ConnectionClosed {
8512 owner: Some(TransportOwner::Local),
8513 connection_code,
8514 application_code,
8515 internal_code: None,
8516 reason: Some(String::from_utf8_lossy(&local_error.reason).to_string()),
8517 trigger,
8518 }
8519 },
8520
8521 _ => qlog::events::connectivity::ConnectionClosed {
8522 owner: None,
8523 connection_code: None,
8524 application_code: None,
8525 internal_code: None,
8526 reason: None,
8527 trigger: None,
8528 },
8529 };
8530
8531 qlog_with_type!(QLOG_CONNECTION_CLOSED, self.qlog, q, {
8532 let ev_data = EventData::ConnectionClosed(cc);
8533
8534 q.add_event_data_now(ev_data).ok();
8535 });
8536 self.qlog.streamer = None;
8537 }
8538 self.closed = true;
8539 }
8540}
8541
8542#[cfg(feature = "boringssl-boring-crate")]
8543impl<F: BufFactory> AsMut<boring::ssl::SslRef> for Connection<F> {
8544 fn as_mut(&mut self) -> &mut boring::ssl::SslRef {
8545 self.handshake.ssl_mut()
8546 }
8547}
8548
8549/// Maps an `Error` to `Error::Done`, or itself.
8550///
8551/// When a received packet that hasn't yet been authenticated triggers a failure
8552/// it should, in most cases, be ignored, instead of raising a connection error,
8553/// to avoid potential man-in-the-middle and man-on-the-side attacks.
8554///
8555/// However, if no other packet was previously received, the connection should
8556/// indeed be closed as the received packet might just be network background
8557/// noise, and it shouldn't keep resources occupied indefinitely.
8558///
8559/// This function maps an error to `Error::Done` to ignore a packet failure
8560/// without aborting the connection, except when no other packet was previously
8561/// received, in which case the error itself is returned, but only on the
8562/// server-side as the client will already have armed the idle timer.
8563///
8564/// This must only be used for errors preceding packet authentication. Failures
8565/// happening after a packet has been authenticated should still cause the
8566/// connection to be aborted.
8567fn drop_pkt_on_err(
8568 e: Error, recv_count: usize, is_server: bool, trace_id: &str,
8569) -> Error {
8570 // On the server, if no other packet has been successfully processed, abort
8571 // the connection to avoid keeping the connection open when only junk is
8572 // received.
8573 if is_server && recv_count == 0 {
8574 return e;
8575 }
8576
8577 trace!("{trace_id} dropped invalid packet");
8578
8579 // Ignore other invalid packets that haven't been authenticated to prevent
8580 // man-in-the-middle and man-on-the-side attacks.
8581 Error::Done
8582}
8583
8584struct AddrTupleFmt(SocketAddr, SocketAddr);
8585
8586impl std::fmt::Display for AddrTupleFmt {
8587 fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
8588 let AddrTupleFmt(src, dst) = &self;
8589
8590 if src.ip().is_unspecified() || dst.ip().is_unspecified() {
8591 return Ok(());
8592 }
8593
8594 f.write_fmt(format_args!("src:{src} dst:{dst}"))
8595 }
8596}
8597
8598/// Statistics about the connection.
8599///
8600/// A connection's statistics can be collected using the [`stats()`] method.
8601///
8602/// [`stats()`]: struct.Connection.html#method.stats
8603#[derive(Clone, Default)]
8604pub struct Stats {
8605 /// The number of QUIC packets received.
8606 pub recv: usize,
8607
8608 /// The number of QUIC packets sent.
8609 pub sent: usize,
8610
8611 /// The number of QUIC packets that were lost.
8612 pub lost: usize,
8613
8614 /// The number of QUIC packets that were marked as lost but later acked.
8615 pub spurious_lost: usize,
8616
8617 /// The number of sent QUIC packets with retransmitted data.
8618 pub retrans: usize,
8619
8620 /// The number of sent bytes.
8621 pub sent_bytes: u64,
8622
8623 /// The number of received bytes.
8624 pub recv_bytes: u64,
8625
8626 /// The number of bytes sent acked.
8627 pub acked_bytes: u64,
8628
8629 /// The number of bytes sent lost.
8630 pub lost_bytes: u64,
8631
8632 /// The number of stream bytes retransmitted.
8633 pub stream_retrans_bytes: u64,
8634
8635 /// The number of DATAGRAM frames received.
8636 pub dgram_recv: usize,
8637
8638 /// The number of DATAGRAM frames sent.
8639 pub dgram_sent: usize,
8640
8641 /// The number of known paths for the connection.
8642 pub paths_count: usize,
8643
8644 /// The number of streams reset by local.
8645 pub reset_stream_count_local: u64,
8646
8647 /// The number of streams stopped by local.
8648 pub stopped_stream_count_local: u64,
8649
8650 /// The number of streams reset by remote.
8651 pub reset_stream_count_remote: u64,
8652
8653 /// The number of streams stopped by remote.
8654 pub stopped_stream_count_remote: u64,
8655
8656 /// The number of DATA_BLOCKED frames sent due to hitting the connection
8657 /// flow control limit.
8658 pub data_blocked_sent_count: u64,
8659
8660 /// The number of STREAM_DATA_BLOCKED frames sent due to a stream hitting
8661 /// the stream flow control limit.
8662 pub stream_data_blocked_sent_count: u64,
8663
8664 /// The number of DATA_BLOCKED frames received from the remote.
8665 pub data_blocked_recv_count: u64,
8666
8667 /// The number of STREAM_DATA_BLOCKED frames received from the remote.
8668 pub stream_data_blocked_recv_count: u64,
8669
8670 /// The total number of PATH_CHALLENGE frames that were received.
8671 pub path_challenge_rx_count: u64,
8672
8673 /// Total duration during which this side of the connection was
8674 /// actively sending bytes or waiting for those bytes to be acked.
8675 pub bytes_in_flight_duration: Duration,
8676
8677 /// Health state of the connection's tx_buffered.
8678 pub tx_buffered_state: TxBufferTrackingState,
8679}
8680
8681impl std::fmt::Debug for Stats {
8682 #[inline]
8683 fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
8684 write!(
8685 f,
8686 "recv={} sent={} lost={} retrans={}",
8687 self.recv, self.sent, self.lost, self.retrans,
8688 )?;
8689
8690 write!(
8691 f,
8692 " sent_bytes={} recv_bytes={} lost_bytes={}",
8693 self.sent_bytes, self.recv_bytes, self.lost_bytes,
8694 )?;
8695
8696 Ok(())
8697 }
8698}
8699
8700/// QUIC Unknown Transport Parameter.
8701///
8702/// A QUIC transport parameter that is not specifically recognized
8703/// by this implementation.
8704#[derive(Clone, Debug, PartialEq)]
8705pub struct UnknownTransportParameter<T> {
8706 /// The ID of the unknown transport parameter.
8707 pub id: u64,
8708
8709 /// Original data representing the value of the unknown transport parameter.
8710 pub value: T,
8711}
8712
8713impl<T> UnknownTransportParameter<T> {
8714 /// Checks whether an unknown Transport Parameter's ID is in the reserved
8715 /// space.
8716 ///
8717 /// See Section 18.1 in [RFC9000](https://datatracker.ietf.org/doc/html/rfc9000#name-reserved-transport-paramete).
8718 pub fn is_reserved(&self) -> bool {
8719 let n = (self.id - 27) / 31;
8720 self.id == 31 * n + 27
8721 }
8722}
8723
8724#[cfg(feature = "qlog")]
8725impl From<UnknownTransportParameter<Vec<u8>>>
8726 for qlog::events::quic::UnknownTransportParameter
8727{
8728 fn from(value: UnknownTransportParameter<Vec<u8>>) -> Self {
8729 Self {
8730 id: value.id,
8731 value: qlog::HexSlice::maybe_string(Some(value.value.as_slice()))
8732 .unwrap_or_default(),
8733 }
8734 }
8735}
8736
8737impl From<UnknownTransportParameter<&[u8]>>
8738 for UnknownTransportParameter<Vec<u8>>
8739{
8740 // When an instance of an UnknownTransportParameter is actually
8741 // stored in UnknownTransportParameters, then we make a copy
8742 // of the bytes if the source is an instance of an UnknownTransportParameter
8743 // whose value is not owned.
8744 fn from(value: UnknownTransportParameter<&[u8]>) -> Self {
8745 Self {
8746 id: value.id,
8747 value: value.value.to_vec(),
8748 }
8749 }
8750}
8751
8752/// Track unknown transport parameters, up to a limit.
8753#[derive(Clone, Debug, PartialEq, Default)]
8754pub struct UnknownTransportParameters {
8755 /// The space remaining for storing unknown transport parameters.
8756 pub capacity: usize,
8757 /// The unknown transport parameters.
8758 pub parameters: Vec<UnknownTransportParameter<Vec<u8>>>,
8759}
8760
8761impl UnknownTransportParameters {
8762 /// Pushes an unknown transport parameter into storage if there is space
8763 /// remaining.
8764 pub fn push(&mut self, new: UnknownTransportParameter<&[u8]>) -> Result<()> {
8765 let new_unknown_tp_size = new.value.len() + size_of::<u64>();
8766 if new_unknown_tp_size < self.capacity {
8767 self.capacity -= new_unknown_tp_size;
8768 self.parameters.push(new.into());
8769 Ok(())
8770 } else {
8771 Err(octets::BufferTooShortError.into())
8772 }
8773 }
8774}
8775
8776/// An Iterator over unknown transport parameters.
8777pub struct UnknownTransportParameterIterator<'a> {
8778 index: usize,
8779 parameters: &'a Vec<UnknownTransportParameter<Vec<u8>>>,
8780}
8781
8782impl<'a> IntoIterator for &'a UnknownTransportParameters {
8783 type IntoIter = UnknownTransportParameterIterator<'a>;
8784 type Item = &'a UnknownTransportParameter<Vec<u8>>;
8785
8786 fn into_iter(self) -> Self::IntoIter {
8787 UnknownTransportParameterIterator {
8788 index: 0,
8789 parameters: &self.parameters,
8790 }
8791 }
8792}
8793
8794impl<'a> Iterator for UnknownTransportParameterIterator<'a> {
8795 type Item = &'a UnknownTransportParameter<Vec<u8>>;
8796
8797 fn next(&mut self) -> Option<Self::Item> {
8798 let result = self.parameters.get(self.index);
8799 self.index += 1;
8800 result
8801 }
8802}
8803
8804/// QUIC Transport Parameters
8805#[derive(Clone, Debug, PartialEq)]
8806pub struct TransportParams {
8807 /// Value of Destination CID field from first Initial packet sent by client
8808 pub original_destination_connection_id: Option<ConnectionId<'static>>,
8809 /// The maximum idle timeout.
8810 pub max_idle_timeout: u64,
8811 /// Token used for verifying stateless resets
8812 pub stateless_reset_token: Option<u128>,
8813 /// The maximum UDP payload size.
8814 pub max_udp_payload_size: u64,
8815 /// The initial flow control maximum data for the connection.
8816 pub initial_max_data: u64,
8817 /// The initial flow control maximum data for local bidirectional streams.
8818 pub initial_max_stream_data_bidi_local: u64,
8819 /// The initial flow control maximum data for remote bidirectional streams.
8820 pub initial_max_stream_data_bidi_remote: u64,
8821 /// The initial flow control maximum data for unidirectional streams.
8822 pub initial_max_stream_data_uni: u64,
8823 /// The initial maximum bidirectional streams.
8824 pub initial_max_streams_bidi: u64,
8825 /// The initial maximum unidirectional streams.
8826 pub initial_max_streams_uni: u64,
8827 /// The ACK delay exponent.
8828 pub ack_delay_exponent: u64,
8829 /// The max ACK delay.
8830 pub max_ack_delay: u64,
8831 /// Whether active migration is disabled.
8832 pub disable_active_migration: bool,
8833 /// The active connection ID limit.
8834 pub active_conn_id_limit: u64,
8835 /// The value that the endpoint included in the Source CID field of a Retry
8836 /// Packet.
8837 pub initial_source_connection_id: Option<ConnectionId<'static>>,
8838 /// The value that the server included in the Source CID field of a Retry
8839 /// Packet.
8840 pub retry_source_connection_id: Option<ConnectionId<'static>>,
8841 /// DATAGRAM frame extension parameter, if any.
8842 pub max_datagram_frame_size: Option<u64>,
8843 /// Unknown peer transport parameters and values, if any.
8844 pub unknown_params: Option<UnknownTransportParameters>,
8845 // pub preferred_address: ...,
8846}
8847
8848impl Default for TransportParams {
8849 fn default() -> TransportParams {
8850 TransportParams {
8851 original_destination_connection_id: None,
8852 max_idle_timeout: 0,
8853 stateless_reset_token: None,
8854 max_udp_payload_size: 65527,
8855 initial_max_data: 0,
8856 initial_max_stream_data_bidi_local: 0,
8857 initial_max_stream_data_bidi_remote: 0,
8858 initial_max_stream_data_uni: 0,
8859 initial_max_streams_bidi: 0,
8860 initial_max_streams_uni: 0,
8861 ack_delay_exponent: 3,
8862 max_ack_delay: 25,
8863 disable_active_migration: false,
8864 active_conn_id_limit: 2,
8865 initial_source_connection_id: None,
8866 retry_source_connection_id: None,
8867 max_datagram_frame_size: None,
8868 unknown_params: Default::default(),
8869 }
8870 }
8871}
8872
8873impl TransportParams {
8874 fn decode(
8875 buf: &[u8], is_server: bool, unknown_size: Option<usize>,
8876 ) -> Result<TransportParams> {
8877 let mut params = octets::Octets::with_slice(buf);
8878 let mut seen_params = HashSet::new();
8879
8880 let mut tp = TransportParams::default();
8881
8882 if let Some(unknown_transport_param_tracking_size) = unknown_size {
8883 tp.unknown_params = Some(UnknownTransportParameters {
8884 capacity: unknown_transport_param_tracking_size,
8885 parameters: vec![],
8886 });
8887 }
8888
8889 while params.cap() > 0 {
8890 let id = params.get_varint()?;
8891
8892 if seen_params.contains(&id) {
8893 return Err(Error::InvalidTransportParam);
8894 }
8895 seen_params.insert(id);
8896
8897 let mut val = params.get_bytes_with_varint_length()?;
8898
8899 match id {
8900 0x0000 => {
8901 if is_server {
8902 return Err(Error::InvalidTransportParam);
8903 }
8904
8905 tp.original_destination_connection_id =
8906 Some(val.to_vec().into());
8907 },
8908
8909 0x0001 => {
8910 tp.max_idle_timeout = val.get_varint()?;
8911 },
8912
8913 0x0002 => {
8914 if is_server {
8915 return Err(Error::InvalidTransportParam);
8916 }
8917
8918 tp.stateless_reset_token = Some(u128::from_be_bytes(
8919 val.get_bytes(16)?
8920 .to_vec()
8921 .try_into()
8922 .map_err(|_| Error::BufferTooShort)?,
8923 ));
8924 },
8925
8926 0x0003 => {
8927 tp.max_udp_payload_size = val.get_varint()?;
8928
8929 if tp.max_udp_payload_size < 1200 {
8930 return Err(Error::InvalidTransportParam);
8931 }
8932 },
8933
8934 0x0004 => {
8935 tp.initial_max_data = val.get_varint()?;
8936 },
8937
8938 0x0005 => {
8939 tp.initial_max_stream_data_bidi_local = val.get_varint()?;
8940 },
8941
8942 0x0006 => {
8943 tp.initial_max_stream_data_bidi_remote = val.get_varint()?;
8944 },
8945
8946 0x0007 => {
8947 tp.initial_max_stream_data_uni = val.get_varint()?;
8948 },
8949
8950 0x0008 => {
8951 let max = val.get_varint()?;
8952
8953 if max > MAX_STREAM_ID {
8954 return Err(Error::InvalidTransportParam);
8955 }
8956
8957 tp.initial_max_streams_bidi = max;
8958 },
8959
8960 0x0009 => {
8961 let max = val.get_varint()?;
8962
8963 if max > MAX_STREAM_ID {
8964 return Err(Error::InvalidTransportParam);
8965 }
8966
8967 tp.initial_max_streams_uni = max;
8968 },
8969
8970 0x000a => {
8971 let ack_delay_exponent = val.get_varint()?;
8972
8973 if ack_delay_exponent > 20 {
8974 return Err(Error::InvalidTransportParam);
8975 }
8976
8977 tp.ack_delay_exponent = ack_delay_exponent;
8978 },
8979
8980 0x000b => {
8981 let max_ack_delay = val.get_varint()?;
8982
8983 if max_ack_delay >= 2_u64.pow(14) {
8984 return Err(Error::InvalidTransportParam);
8985 }
8986
8987 tp.max_ack_delay = max_ack_delay;
8988 },
8989
8990 0x000c => {
8991 tp.disable_active_migration = true;
8992 },
8993
8994 0x000d => {
8995 if is_server {
8996 return Err(Error::InvalidTransportParam);
8997 }
8998
8999 // TODO: decode preferred_address
9000 },
9001
9002 0x000e => {
9003 let limit = val.get_varint()?;
9004
9005 if limit < 2 {
9006 return Err(Error::InvalidTransportParam);
9007 }
9008
9009 tp.active_conn_id_limit = limit;
9010 },
9011
9012 0x000f => {
9013 tp.initial_source_connection_id = Some(val.to_vec().into());
9014 },
9015
9016 0x00010 => {
9017 if is_server {
9018 return Err(Error::InvalidTransportParam);
9019 }
9020
9021 tp.retry_source_connection_id = Some(val.to_vec().into());
9022 },
9023
9024 0x0020 => {
9025 tp.max_datagram_frame_size = Some(val.get_varint()?);
9026 },
9027
9028 // Track unknown transport parameters specially.
9029 unknown_tp_id => {
9030 if let Some(unknown_params) = &mut tp.unknown_params {
9031 // It is _not_ an error not to have space enough to track
9032 // an unknown parameter.
9033 let _ = unknown_params.push(UnknownTransportParameter {
9034 id: unknown_tp_id,
9035 value: val.buf(),
9036 });
9037 }
9038 },
9039 }
9040 }
9041
9042 Ok(tp)
9043 }
9044
9045 fn encode_param(
9046 b: &mut octets::OctetsMut, ty: u64, len: usize,
9047 ) -> Result<()> {
9048 b.put_varint(ty)?;
9049 b.put_varint(len as u64)?;
9050
9051 Ok(())
9052 }
9053
9054 fn encode<'a>(
9055 tp: &TransportParams, is_server: bool, out: &'a mut [u8],
9056 ) -> Result<&'a mut [u8]> {
9057 let mut b = octets::OctetsMut::with_slice(out);
9058
9059 if is_server {
9060 if let Some(ref odcid) = tp.original_destination_connection_id {
9061 TransportParams::encode_param(&mut b, 0x0000, odcid.len())?;
9062 b.put_bytes(odcid)?;
9063 }
9064 };
9065
9066 if tp.max_idle_timeout != 0 {
9067 assert!(tp.max_idle_timeout <= octets::MAX_VAR_INT);
9068 TransportParams::encode_param(
9069 &mut b,
9070 0x0001,
9071 octets::varint_len(tp.max_idle_timeout),
9072 )?;
9073 b.put_varint(tp.max_idle_timeout)?;
9074 }
9075
9076 if is_server {
9077 if let Some(ref token) = tp.stateless_reset_token {
9078 TransportParams::encode_param(&mut b, 0x0002, 16)?;
9079 b.put_bytes(&token.to_be_bytes())?;
9080 }
9081 }
9082
9083 if tp.max_udp_payload_size != 0 {
9084 assert!(tp.max_udp_payload_size <= octets::MAX_VAR_INT);
9085 TransportParams::encode_param(
9086 &mut b,
9087 0x0003,
9088 octets::varint_len(tp.max_udp_payload_size),
9089 )?;
9090 b.put_varint(tp.max_udp_payload_size)?;
9091 }
9092
9093 if tp.initial_max_data != 0 {
9094 assert!(tp.initial_max_data <= octets::MAX_VAR_INT);
9095 TransportParams::encode_param(
9096 &mut b,
9097 0x0004,
9098 octets::varint_len(tp.initial_max_data),
9099 )?;
9100 b.put_varint(tp.initial_max_data)?;
9101 }
9102
9103 if tp.initial_max_stream_data_bidi_local != 0 {
9104 assert!(tp.initial_max_stream_data_bidi_local <= octets::MAX_VAR_INT);
9105 TransportParams::encode_param(
9106 &mut b,
9107 0x0005,
9108 octets::varint_len(tp.initial_max_stream_data_bidi_local),
9109 )?;
9110 b.put_varint(tp.initial_max_stream_data_bidi_local)?;
9111 }
9112
9113 if tp.initial_max_stream_data_bidi_remote != 0 {
9114 assert!(
9115 tp.initial_max_stream_data_bidi_remote <= octets::MAX_VAR_INT
9116 );
9117 TransportParams::encode_param(
9118 &mut b,
9119 0x0006,
9120 octets::varint_len(tp.initial_max_stream_data_bidi_remote),
9121 )?;
9122 b.put_varint(tp.initial_max_stream_data_bidi_remote)?;
9123 }
9124
9125 if tp.initial_max_stream_data_uni != 0 {
9126 assert!(tp.initial_max_stream_data_uni <= octets::MAX_VAR_INT);
9127 TransportParams::encode_param(
9128 &mut b,
9129 0x0007,
9130 octets::varint_len(tp.initial_max_stream_data_uni),
9131 )?;
9132 b.put_varint(tp.initial_max_stream_data_uni)?;
9133 }
9134
9135 if tp.initial_max_streams_bidi != 0 {
9136 assert!(tp.initial_max_streams_bidi <= octets::MAX_VAR_INT);
9137 TransportParams::encode_param(
9138 &mut b,
9139 0x0008,
9140 octets::varint_len(tp.initial_max_streams_bidi),
9141 )?;
9142 b.put_varint(tp.initial_max_streams_bidi)?;
9143 }
9144
9145 if tp.initial_max_streams_uni != 0 {
9146 assert!(tp.initial_max_streams_uni <= octets::MAX_VAR_INT);
9147 TransportParams::encode_param(
9148 &mut b,
9149 0x0009,
9150 octets::varint_len(tp.initial_max_streams_uni),
9151 )?;
9152 b.put_varint(tp.initial_max_streams_uni)?;
9153 }
9154
9155 if tp.ack_delay_exponent != 0 {
9156 assert!(tp.ack_delay_exponent <= octets::MAX_VAR_INT);
9157 TransportParams::encode_param(
9158 &mut b,
9159 0x000a,
9160 octets::varint_len(tp.ack_delay_exponent),
9161 )?;
9162 b.put_varint(tp.ack_delay_exponent)?;
9163 }
9164
9165 if tp.max_ack_delay != 0 {
9166 assert!(tp.max_ack_delay <= octets::MAX_VAR_INT);
9167 TransportParams::encode_param(
9168 &mut b,
9169 0x000b,
9170 octets::varint_len(tp.max_ack_delay),
9171 )?;
9172 b.put_varint(tp.max_ack_delay)?;
9173 }
9174
9175 if tp.disable_active_migration {
9176 TransportParams::encode_param(&mut b, 0x000c, 0)?;
9177 }
9178
9179 // TODO: encode preferred_address
9180
9181 if tp.active_conn_id_limit != 2 {
9182 assert!(tp.active_conn_id_limit <= octets::MAX_VAR_INT);
9183 TransportParams::encode_param(
9184 &mut b,
9185 0x000e,
9186 octets::varint_len(tp.active_conn_id_limit),
9187 )?;
9188 b.put_varint(tp.active_conn_id_limit)?;
9189 }
9190
9191 if let Some(scid) = &tp.initial_source_connection_id {
9192 TransportParams::encode_param(&mut b, 0x000f, scid.len())?;
9193 b.put_bytes(scid)?;
9194 }
9195
9196 if is_server {
9197 if let Some(scid) = &tp.retry_source_connection_id {
9198 TransportParams::encode_param(&mut b, 0x0010, scid.len())?;
9199 b.put_bytes(scid)?;
9200 }
9201 }
9202
9203 if let Some(max_datagram_frame_size) = tp.max_datagram_frame_size {
9204 assert!(max_datagram_frame_size <= octets::MAX_VAR_INT);
9205 TransportParams::encode_param(
9206 &mut b,
9207 0x0020,
9208 octets::varint_len(max_datagram_frame_size),
9209 )?;
9210 b.put_varint(max_datagram_frame_size)?;
9211 }
9212
9213 let out_len = b.off();
9214
9215 Ok(&mut out[..out_len])
9216 }
9217
9218 /// Creates a qlog event for connection transport parameters and TLS fields
9219 #[cfg(feature = "qlog")]
9220 pub fn to_qlog(
9221 &self, owner: TransportOwner, cipher: Option<crypto::Algorithm>,
9222 ) -> EventData {
9223 let original_destination_connection_id = qlog::HexSlice::maybe_string(
9224 self.original_destination_connection_id.as_ref(),
9225 );
9226
9227 let stateless_reset_token = qlog::HexSlice::maybe_string(
9228 self.stateless_reset_token.map(|s| s.to_be_bytes()).as_ref(),
9229 );
9230
9231 let tls_cipher: Option<String> = cipher.map(|f| format!("{f:?}"));
9232
9233 EventData::TransportParametersSet(
9234 qlog::events::quic::TransportParametersSet {
9235 owner: Some(owner),
9236 tls_cipher,
9237 original_destination_connection_id,
9238 stateless_reset_token,
9239 disable_active_migration: Some(self.disable_active_migration),
9240 max_idle_timeout: Some(self.max_idle_timeout),
9241 max_udp_payload_size: Some(self.max_udp_payload_size as u32),
9242 ack_delay_exponent: Some(self.ack_delay_exponent as u16),
9243 max_ack_delay: Some(self.max_ack_delay as u16),
9244 active_connection_id_limit: Some(
9245 self.active_conn_id_limit as u32,
9246 ),
9247
9248 initial_max_data: Some(self.initial_max_data),
9249 initial_max_stream_data_bidi_local: Some(
9250 self.initial_max_stream_data_bidi_local,
9251 ),
9252 initial_max_stream_data_bidi_remote: Some(
9253 self.initial_max_stream_data_bidi_remote,
9254 ),
9255 initial_max_stream_data_uni: Some(
9256 self.initial_max_stream_data_uni,
9257 ),
9258 initial_max_streams_bidi: Some(self.initial_max_streams_bidi),
9259 initial_max_streams_uni: Some(self.initial_max_streams_uni),
9260
9261 unknown_parameters: self
9262 .unknown_params
9263 .as_ref()
9264 .map(|unknown_params| {
9265 unknown_params
9266 .into_iter()
9267 .cloned()
9268 .map(
9269 Into::<
9270 qlog::events::quic::UnknownTransportParameter,
9271 >::into,
9272 )
9273 .collect()
9274 })
9275 .unwrap_or_default(),
9276
9277 ..Default::default()
9278 },
9279 )
9280 }
9281}
9282
9283#[doc(hidden)]
9284pub mod test_utils;
9285
9286#[cfg(test)]
9287mod tests;
9288
9289pub use crate::packet::ConnectionId;
9290pub use crate::packet::Header;
9291pub use crate::packet::Type;
9292
9293pub use crate::path::PathEvent;
9294pub use crate::path::PathStats;
9295pub use crate::path::SocketAddrIter;
9296
9297pub use crate::recovery::BbrBwLoReductionStrategy;
9298pub use crate::recovery::BbrParams;
9299pub use crate::recovery::CongestionControlAlgorithm;
9300pub use crate::recovery::StartupExit;
9301pub use crate::recovery::StartupExitReason;
9302
9303pub use crate::stream::StreamIter;
9304
9305pub use crate::range_buf::BufFactory;
9306pub use crate::range_buf::BufSplit;
9307
9308pub use crate::error::ConnectionError;
9309pub use crate::error::Error;
9310pub use crate::error::Result;
9311pub use crate::error::WireErrorCode;
9312
9313mod cid;
9314mod crypto;
9315mod dgram;
9316mod error;
9317#[cfg(feature = "ffi")]
9318mod ffi;
9319mod flowcontrol;
9320mod frame;
9321pub mod h3;
9322mod minmax;
9323mod packet;
9324mod path;
9325mod pmtud;
9326mod rand;
9327mod range_buf;
9328mod ranges;
9329mod recovery;
9330mod stream;
9331mod tls;