quiche/recovery/congestion/
cubic.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
// Copyright (C) 2019, Cloudflare, Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright notice,
//       this list of conditions and the following disclaimer.
//
//     * Redistributions in binary form must reproduce the above copyright
//       notice, this list of conditions and the following disclaimer in the
//       documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

//! CUBIC Congestion Control
//!
//! This implementation is based on the following draft:
//! <https://tools.ietf.org/html/draft-ietf-tcpm-rfc8312bis-02>
//!
//! Note that Slow Start can use HyStart++ when enabled.

use std::cmp;

use std::time::Duration;
use std::time::Instant;

use crate::recovery;
use crate::recovery::rtt::RttStats;
use crate::recovery::Acked;
use crate::recovery::Sent;

use super::reno;
use super::Congestion;
use super::CongestionControlOps;

pub(crate) static CUBIC: CongestionControlOps = CongestionControlOps {
    on_init,
    on_packet_sent,
    on_packets_acked,
    congestion_event,
    checkpoint,
    rollback,
    has_custom_pacing,
    debug_fmt,
};

/// CUBIC Constants.
///
/// These are recommended value in RFC8312.
const BETA_CUBIC: f64 = 0.7;

const C: f64 = 0.4;

/// Threshold for rolling back state, as percentage of lost packets relative to
/// cwnd.
const ROLLBACK_THRESHOLD_PERCENT: usize = 20;

/// Minimum threshold for rolling back state, as number of packets.
const MIN_ROLLBACK_THRESHOLD: usize = 2;

/// Default value of alpha_aimd in the beginning of congestion avoidance.
const ALPHA_AIMD: f64 = 3.0 * (1.0 - BETA_CUBIC) / (1.0 + BETA_CUBIC);

/// CUBIC State Variables.
///
/// We need to keep those variables across the connection.
/// k, w_max, w_est are described in the RFC.
#[derive(Debug, Default)]
pub struct State {
    k: f64,

    w_max: f64,

    w_est: f64,

    alpha_aimd: f64,

    // Used in CUBIC fix (see on_packet_sent())
    last_sent_time: Option<Instant>,

    // Store cwnd increment during congestion avoidance.
    cwnd_inc: usize,

    // CUBIC state checkpoint preceding the last congestion event.
    prior: PriorState,
}

/// Stores the CUBIC state from before the last congestion event.
///
/// <https://tools.ietf.org/id/draft-ietf-tcpm-rfc8312bis-00.html#section-4.9>
#[derive(Debug, Default)]
struct PriorState {
    congestion_window: usize,

    ssthresh: usize,

    w_max: f64,

    k: f64,

    epoch_start: Option<Instant>,

    lost_count: usize,
}

/// CUBIC Functions.
///
/// Note that these calculations are based on a count of cwnd as bytes,
/// not packets.
/// Unit of t (duration) and RTT are based on seconds (f64).
impl State {
    // K = cubic_root ((w_max - cwnd) / C) (Eq. 2)
    fn cubic_k(&self, cwnd: usize, max_datagram_size: usize) -> f64 {
        let w_max = self.w_max / max_datagram_size as f64;
        let cwnd = cwnd as f64 / max_datagram_size as f64;

        libm::cbrt((w_max - cwnd) / C)
    }

    // W_cubic(t) = C * (t - K)^3 + w_max (Eq. 1)
    fn w_cubic(&self, t: Duration, max_datagram_size: usize) -> f64 {
        let w_max = self.w_max / max_datagram_size as f64;

        (C * (t.as_secs_f64() - self.k).powi(3) + w_max) *
            max_datagram_size as f64
    }

    // W_est = W_est + alpha_aimd * (segments_acked / cwnd)  (Eq. 4)
    fn w_est_inc(
        &self, acked: usize, cwnd: usize, max_datagram_size: usize,
    ) -> f64 {
        self.alpha_aimd * (acked as f64 / cwnd as f64) * max_datagram_size as f64
    }
}

fn on_init(_r: &mut Congestion) {}

fn on_packet_sent(
    r: &mut Congestion, sent_bytes: usize, bytes_in_flight: usize, now: Instant,
) {
    // See https://github.com/torvalds/linux/commit/30927520dbae297182990bb21d08762bcc35ce1d
    // First transmit when no packets in flight
    let cubic = &mut r.cubic_state;

    if let Some(last_sent_time) = cubic.last_sent_time {
        if bytes_in_flight == 0 {
            let delta = now - last_sent_time;

            // We were application limited (idle) for a while.
            // Shift epoch start to keep cwnd growth to cubic curve.
            if let Some(recovery_start_time) = r.congestion_recovery_start_time {
                if delta.as_nanos() > 0 {
                    r.congestion_recovery_start_time =
                        Some(recovery_start_time + delta);
                }
            }
        }
    }

    cubic.last_sent_time = Some(now);

    reno::on_packet_sent(r, sent_bytes, bytes_in_flight, now);
}

fn on_packets_acked(
    r: &mut Congestion, bytes_in_flight: usize, packets: &mut Vec<Acked>,
    now: Instant, rtt_stats: &RttStats,
) {
    for pkt in packets.drain(..) {
        on_packet_acked(r, bytes_in_flight, &pkt, now, rtt_stats);
    }
}

fn on_packet_acked(
    r: &mut Congestion, bytes_in_flight: usize, packet: &Acked, now: Instant,
    rtt_stats: &RttStats,
) {
    let in_congestion_recovery = r.in_congestion_recovery(packet.time_sent);

    if in_congestion_recovery {
        r.prr.on_packet_acked(
            packet.size,
            bytes_in_flight,
            r.ssthresh,
            r.max_datagram_size,
        );

        return;
    }

    if r.app_limited {
        return;
    }

    // Detecting spurious congestion events.
    // <https://tools.ietf.org/id/draft-ietf-tcpm-rfc8312bis-00.html#section-4.9>
    //
    // When the recovery episode ends with recovering
    // a few packets (less than cwnd / mss * ROLLBACK_THRESHOLD_PERCENT(%)), it's
    // considered as spurious and restore to the previous state.
    if r.congestion_recovery_start_time.is_some() {
        let new_lost = r.lost_count - r.cubic_state.prior.lost_count;

        let rollback_threshold = (r.congestion_window / r.max_datagram_size) *
            ROLLBACK_THRESHOLD_PERCENT /
            100;

        let rollback_threshold = rollback_threshold.max(MIN_ROLLBACK_THRESHOLD);

        if new_lost < rollback_threshold {
            let did_rollback = rollback(r);
            if did_rollback {
                return;
            }
        }
    }

    if r.congestion_window < r.ssthresh {
        // In Slow slart, bytes_acked_sl is used for counting
        // acknowledged bytes.
        r.bytes_acked_sl += packet.size;

        if r.bytes_acked_sl >= r.max_datagram_size {
            if r.hystart.in_css() {
                r.congestion_window +=
                    r.hystart.css_cwnd_inc(r.max_datagram_size);
            } else {
                r.congestion_window += r.max_datagram_size;
            }

            r.bytes_acked_sl -= r.max_datagram_size;
        }

        if r.hystart.on_packet_acked(packet, rtt_stats.latest_rtt, now) {
            // Exit to congestion avoidance if CSS ends.
            r.ssthresh = r.congestion_window;
        }
    } else {
        // Congestion avoidance.
        let ca_start_time;

        // In CSS, use css_start_time instead of congestion_recovery_start_time.
        if r.hystart.in_css() {
            ca_start_time = r.hystart.css_start_time().unwrap();

            // Reset w_max and k when CSS started.
            if r.cubic_state.w_max == 0.0 {
                r.cubic_state.w_max = r.congestion_window as f64;
                r.cubic_state.k = 0.0;

                r.cubic_state.w_est = r.congestion_window as f64;
                r.cubic_state.alpha_aimd = ALPHA_AIMD;
            }
        } else {
            match r.congestion_recovery_start_time {
                Some(t) => ca_start_time = t,
                None => {
                    // When we come here without congestion_event() triggered,
                    // initialize congestion_recovery_start_time, w_max and k.
                    ca_start_time = now;
                    r.congestion_recovery_start_time = Some(now);

                    r.cubic_state.w_max = r.congestion_window as f64;
                    r.cubic_state.k = 0.0;

                    r.cubic_state.w_est = r.congestion_window as f64;
                    r.cubic_state.alpha_aimd = ALPHA_AIMD;
                },
            }
        }

        let t = now.saturating_duration_since(ca_start_time);

        // target = w_cubic(t + rtt)
        let target = r
            .cubic_state
            .w_cubic(t + *rtt_stats.min_rtt, r.max_datagram_size);

        // Clipping target to [cwnd, 1.5 x cwnd]
        let target = f64::max(target, r.congestion_window as f64);
        let target = f64::min(target, r.congestion_window as f64 * 1.5);

        // Update w_est.
        let w_est_inc = r.cubic_state.w_est_inc(
            packet.size,
            r.congestion_window,
            r.max_datagram_size,
        );
        r.cubic_state.w_est += w_est_inc;

        if r.cubic_state.w_est >= r.cubic_state.w_max {
            r.cubic_state.alpha_aimd = 1.0;
        }

        let mut cubic_cwnd = r.congestion_window;

        if r.cubic_state.w_cubic(t, r.max_datagram_size) < r.cubic_state.w_est {
            // AIMD friendly region (W_cubic(t) < W_est)
            cubic_cwnd = cmp::max(cubic_cwnd, r.cubic_state.w_est as usize);
        } else {
            // Concave region or convex region use same increment.
            let cubic_inc =
                r.max_datagram_size * (target as usize - cubic_cwnd) / cubic_cwnd;

            cubic_cwnd += cubic_inc;
        }

        // Update the increment and increase cwnd by MSS.
        r.cubic_state.cwnd_inc += cubic_cwnd - r.congestion_window;

        if r.cubic_state.cwnd_inc >= r.max_datagram_size {
            r.congestion_window += r.max_datagram_size;
            r.cubic_state.cwnd_inc -= r.max_datagram_size;
        }
    }
}

fn congestion_event(
    r: &mut Congestion, bytes_in_flight: usize, _lost_bytes: usize,
    largest_lost_pkt: &Sent, now: Instant,
) {
    let time_sent = largest_lost_pkt.time_sent;
    let in_congestion_recovery = r.in_congestion_recovery(time_sent);

    // Start a new congestion event if packet was sent after the
    // start of the previous congestion recovery period.
    if !in_congestion_recovery {
        r.congestion_recovery_start_time = Some(now);

        // Fast convergence
        if (r.congestion_window as f64) < r.cubic_state.w_max {
            r.cubic_state.w_max =
                r.congestion_window as f64 * (1.0 + BETA_CUBIC) / 2.0;
        } else {
            r.cubic_state.w_max = r.congestion_window as f64;
        }

        r.ssthresh = (r.congestion_window as f64 * BETA_CUBIC) as usize;
        r.ssthresh = cmp::max(
            r.ssthresh,
            r.max_datagram_size * recovery::MINIMUM_WINDOW_PACKETS,
        );
        r.congestion_window = r.ssthresh;

        r.cubic_state.k = if r.cubic_state.w_max < r.congestion_window as f64 {
            0.0
        } else {
            r.cubic_state
                .cubic_k(r.congestion_window, r.max_datagram_size)
        };

        r.cubic_state.cwnd_inc =
            (r.cubic_state.cwnd_inc as f64 * BETA_CUBIC) as usize;

        r.cubic_state.w_est = r.congestion_window as f64;
        r.cubic_state.alpha_aimd = ALPHA_AIMD;

        if r.hystart.in_css() {
            r.hystart.congestion_event();
        }

        r.prr.congestion_event(bytes_in_flight);
    }
}

fn checkpoint(r: &mut Congestion) {
    r.cubic_state.prior.congestion_window = r.congestion_window;
    r.cubic_state.prior.ssthresh = r.ssthresh;
    r.cubic_state.prior.w_max = r.cubic_state.w_max;
    r.cubic_state.prior.k = r.cubic_state.k;
    r.cubic_state.prior.epoch_start = r.congestion_recovery_start_time;
    r.cubic_state.prior.lost_count = r.lost_count;
}

fn rollback(r: &mut Congestion) -> bool {
    // Don't go back to slow start.
    if r.cubic_state.prior.congestion_window < r.cubic_state.prior.ssthresh {
        return false;
    }

    if r.congestion_window >= r.cubic_state.prior.congestion_window {
        return false;
    }

    r.congestion_window = r.cubic_state.prior.congestion_window;
    r.ssthresh = r.cubic_state.prior.ssthresh;
    r.cubic_state.w_max = r.cubic_state.prior.w_max;
    r.cubic_state.k = r.cubic_state.prior.k;
    r.congestion_recovery_start_time = r.cubic_state.prior.epoch_start;

    true
}

fn has_custom_pacing() -> bool {
    false
}

fn debug_fmt(r: &Congestion, f: &mut std::fmt::Formatter) -> std::fmt::Result {
    write!(
        f,
        "cubic={{ k={} w_max={} }} ",
        r.cubic_state.k, r.cubic_state.w_max
    )
}

#[cfg(test)]
mod tests {
    use super::*;

    use crate::CongestionControlAlgorithm;

    use crate::recovery::congestion::hystart;
    use crate::recovery::congestion::test_sender::TestSender;
    use crate::recovery::Recovery;

    fn test_sender() -> TestSender {
        TestSender::new(recovery::CongestionControlAlgorithm::CUBIC, false)
    }

    fn hystart_test_sender() -> TestSender {
        TestSender::new(recovery::CongestionControlAlgorithm::CUBIC, true)
    }

    #[test]
    fn cubic_init() {
        let mut cfg = crate::Config::new(crate::PROTOCOL_VERSION).unwrap();
        cfg.set_cc_algorithm(CongestionControlAlgorithm::CUBIC);

        let r = Recovery::new(&cfg);

        assert!(r.cwnd() > 0);
        assert_eq!(r.bytes_in_flight, 0);
    }

    #[test]
    fn cubic_slow_start() {
        let mut sender = test_sender();
        let size = sender.max_datagram_size;

        // Send initcwnd full MSS packets to become no longer app limited
        for _ in 0..sender.initial_congestion_window_packets {
            sender.send_packet(size);
        }

        let cwnd_prev = sender.congestion_window;

        sender.ack_n_packets(1, size);

        // Check if cwnd increased by packet size (slow start)
        assert_eq!(sender.congestion_window, cwnd_prev + size);
    }

    #[test]
    fn cubic_slow_start_multi_acks() {
        let mut sender = test_sender();
        let size = sender.max_datagram_size;

        // Send initcwnd full MSS packets to become no longer app limited
        for _ in 0..sender.initial_congestion_window_packets {
            sender.send_packet(size);
        }

        let cwnd_prev = sender.congestion_window;

        sender.ack_n_packets(3, size);

        // Acked 3 packets.
        assert_eq!(sender.congestion_window, cwnd_prev + size * 3);
    }

    #[test]
    fn cubic_congestion_event() {
        let mut sender = test_sender();
        let size = sender.max_datagram_size;

        sender.send_packet(size);

        let cwnd_prev = sender.congestion_window;

        sender.lose_n_packets(1, size, None);

        // In CUBIC, after congestion event, cwnd will be reduced by (1 -
        // CUBIC_BETA)
        assert_eq!(
            cwnd_prev as f64 * BETA_CUBIC,
            sender.congestion_window as f64
        );
    }

    #[test]
    fn cubic_congestion_avoidance() {
        let mut sender = test_sender();
        let size = sender.max_datagram_size;

        let prev_cwnd = sender.congestion_window;

        // Send initcwnd full MSS packets to become no longer app limited
        for _ in 0..sender.initial_congestion_window_packets {
            sender.send_packet(size);
        }

        // Trigger congestion event to update ssthresh
        sender.lose_n_packets(1, size, None);

        // After congestion event, cwnd will be reduced.
        let cur_cwnd = (prev_cwnd as f64 * BETA_CUBIC) as usize;
        assert_eq!(sender.congestion_window, cur_cwnd);

        // Shift current time by 1 RTT.
        let rtt = Duration::from_millis(100);
        sender.update_rtt(rtt);
        // Exit from the recovery.
        sender.advance_time(rtt);

        // During Congestion Avoidance, it will take
        // 5 ACKs to increase cwnd by 1 MSS.
        for _ in 0..5 {
            sender.ack_n_packets(1, size);
            sender.advance_time(rtt);
        }

        assert_eq!(sender.congestion_window, cur_cwnd + size);
    }

    #[test]
    fn cubic_hystart_css_to_ss() {
        let mut sender = hystart_test_sender();
        let size = sender.max_datagram_size;

        // 1st round.
        let n_rtt_sample = hystart::N_RTT_SAMPLE;

        let rtt_1st = Duration::from_millis(50);

        let next_rnd = sender.next_pkt + n_rtt_sample as u64 - 1;
        sender.hystart.start_round(next_rnd);
        // Send 1st round packets.
        for _ in 0..n_rtt_sample {
            sender.send_packet(size);
        }
        sender.update_app_limited(false);

        // Receiving Acks.
        sender.advance_time(rtt_1st);
        sender.update_rtt(rtt_1st);
        sender.ack_n_packets(n_rtt_sample, size);

        // Not in CSS yet.
        assert!(sender.hystart.css_start_time().is_none());

        // 2nd round.
        let mut rtt_2nd = Duration::from_millis(100);

        sender.advance_time(rtt_2nd);

        let next_rnd = sender.next_pkt + n_rtt_sample as u64 - 1;
        sender.hystart.start_round(next_rnd);
        // Send 2nd round packets.
        for _ in 0..n_rtt_sample {
            sender.send_packet(size);
        }
        sender.update_app_limited(false);

        // Receiving Acks.
        // Last ack will cause to exit to CSS.
        let mut cwnd_prev = sender.congestion_window();

        for _ in 0..n_rtt_sample {
            cwnd_prev = sender.congestion_window();
            sender.update_rtt(rtt_2nd);
            sender.ack_n_packets(1, size);
            // Keep increasing RTT so that hystart exits to CSS.
            rtt_2nd += rtt_2nd.saturating_add(Duration::from_millis(4));
        }

        // Now we are in CSS.
        assert!(sender.hystart.css_start_time().is_some());
        assert_eq!(sender.congestion_window(), cwnd_prev + size);

        // 3rd round, which RTT is less than previous round to
        // trigger back to Slow Start.
        let rtt_3rd = Duration::from_millis(80);
        sender.advance_time(rtt_3rd);
        cwnd_prev = sender.congestion_window();

        let next_rnd = sender.next_pkt + n_rtt_sample as u64 - 1;
        sender.hystart.start_round(next_rnd);
        // Send 3nd round packets.
        for _ in 0..n_rtt_sample {
            sender.send_packet(size);
        }
        sender.update_app_limited(false);

        // Receiving Acks.
        // Last ack will cause to exit to SS.
        sender.update_rtt(rtt_3rd);
        sender.ack_n_packets(n_rtt_sample, size);

        // Now we are back in Slow Start.
        assert!(sender.hystart.css_start_time().is_none());
        assert_eq!(
            sender.congestion_window(),
            cwnd_prev +
                size / hystart::CSS_GROWTH_DIVISOR * hystart::N_RTT_SAMPLE
        );
    }

    #[test]
    fn cubic_hystart_css_to_ca() {
        let mut sender = hystart_test_sender();
        let size = sender.max_datagram_size;

        // 1st round.
        let n_rtt_sample = hystart::N_RTT_SAMPLE;

        let rtt_1st = Duration::from_millis(50);

        let next_rnd = sender.next_pkt + n_rtt_sample as u64 - 1;
        sender.hystart.start_round(next_rnd);
        // Send 1st round packets.
        for _ in 0..n_rtt_sample {
            sender.send_packet(size);
        }
        sender.update_app_limited(false);

        // Receiving Acks.
        sender.advance_time(rtt_1st);
        sender.update_rtt(rtt_1st);
        sender.ack_n_packets(n_rtt_sample, size);

        // Not in CSS yet.
        assert!(sender.hystart.css_start_time().is_none());

        // 2nd round.
        let mut rtt_2nd = Duration::from_millis(100);
        sender.advance_time(rtt_2nd);
        // Send 2nd round packets.
        let next_rnd = sender.next_pkt + n_rtt_sample as u64 - 1;
        sender.hystart.start_round(next_rnd);
        for _ in 0..n_rtt_sample {
            sender.send_packet(size);
        }
        sender.update_app_limited(false);

        // Receiving Acks.
        // Last ack will cause to exit to CSS.
        let mut cwnd_prev = sender.congestion_window();

        for _ in 0..n_rtt_sample {
            cwnd_prev = sender.congestion_window();
            sender.update_rtt(rtt_2nd);
            sender.ack_n_packets(1, size);
            // Keep increasing RTT so that hystart exits to CSS.
            rtt_2nd += rtt_2nd.saturating_add(Duration::from_millis(4));
        }

        // Now we are in CSS.
        assert!(sender.hystart.css_start_time().is_some());
        assert_eq!(sender.congestion_window(), cwnd_prev + size);

        // Run 5 (CSS_ROUNDS) in CSS, to exit to congestion avoidance.
        let rtt_css = Duration::from_millis(100);
        sender.advance_time(rtt_css);

        for _ in 0..hystart::CSS_ROUNDS {
            // Send a round of packets.
            let next_rnd = sender.next_pkt + n_rtt_sample as u64 - 1;
            sender.hystart.start_round(next_rnd);
            for _ in 0..n_rtt_sample {
                sender.send_packet(size);
            }
            sender.update_app_limited(false);

            // Receiving Acks.
            sender.update_rtt(rtt_css);
            sender.ack_n_packets(n_rtt_sample, size);
        }
        // Now we are in congestion avoidance.
        assert_eq!(sender.congestion_window(), sender.ssthresh);
    }

    #[test]
    fn cubic_spurious_congestion_event() {
        let mut sender = test_sender();
        let size = sender.max_datagram_size;

        let prev_cwnd = sender.congestion_window();

        // Send initcwnd full MSS packets to become no longer app limited
        for _ in 0..sender.initial_congestion_window_packets {
            sender.send_packet(size);
        }
        sender.lose_n_packets(1, size, None);

        // After congestion event, cwnd will be reduced.
        let cur_cwnd = (prev_cwnd as f64 * BETA_CUBIC) as usize;
        assert_eq!(sender.congestion_window(), cur_cwnd);

        // Ack more than cwnd bytes with rtt=100ms
        let rtt = Duration::from_millis(100);
        sender.update_rtt(rtt);

        let acked = Acked {
            pkt_num: 0,
            // To exit from recovery
            time_sent: sender.time + rtt,
            size,
            delivered: 0,
            delivered_time: sender.time,
            first_sent_time: sender.time,
            is_app_limited: false,
            rtt: Duration::ZERO,
        };

        // Trigger detecting spurious congestion event
        sender.inject_ack(acked, sender.time + rtt + Duration::from_millis(5));

        // This is from slow start, no rollback.
        assert_eq!(sender.congestion_window(), cur_cwnd);

        sender.advance_time(rtt);

        let prev_cwnd = sender.congestion_window();

        sender.lose_n_packets(1, size, Some(sender.time));

        // After congestion event, cwnd will be reduced.
        let cur_cwnd = (cur_cwnd as f64 * BETA_CUBIC) as usize;
        assert_eq!(sender.congestion_window(), cur_cwnd);

        sender.advance_time(rtt + Duration::from_millis(5));

        let acked = Acked {
            pkt_num: 0,
            // To exit from recovery
            time_sent: sender.time + rtt,
            size,
            delivered: 0,
            delivered_time: sender.time,
            first_sent_time: sender.time,
            is_app_limited: false,
            rtt: Duration::ZERO,
        };

        // Trigger detecting spurious congestion event.
        sender.inject_ack(acked, sender.time + rtt + Duration::from_millis(5));

        // cwnd is rolled back to the previous one.
        assert_eq!(sender.congestion_window(), prev_cwnd);
    }

    #[test]
    fn cubic_fast_convergence() {
        let mut sender = test_sender();
        let size = sender.max_datagram_size;

        let prev_cwnd = sender.congestion_window;

        // Send initcwnd full MSS packets to become no longer app limited
        for _ in 0..sender.initial_congestion_window_packets {
            sender.send_packet(size);
        }

        // Trigger congestion event to update ssthresh
        sender.lose_n_packets(1, size, None);

        // After 1st congestion event, cwnd will be reduced.
        let cur_cwnd = (prev_cwnd as f64 * BETA_CUBIC) as usize;
        assert_eq!(sender.congestion_window, cur_cwnd);

        // Shift current time by 1 RTT.
        let rtt = Duration::from_millis(100);
        sender.update_rtt(rtt);
        // Exit from the recovery.
        sender.advance_time(rtt);

        // During Congestion Avoidance, it will take
        // 5 ACKs to increase cwnd by 1 MSS.
        for _ in 0..5 {
            sender.ack_n_packets(1, size);
            sender.advance_time(rtt);
        }

        assert_eq!(sender.congestion_window, cur_cwnd + size);

        let prev_cwnd = sender.congestion_window;

        // Fast convergence: now there is 2nd congestion event and
        // cwnd is not fully recovered to w_max, w_max will be
        // further reduced.
        sender.lose_n_packets(1, size, None);

        // After 2nd congestion event, cwnd will be reduced.
        let cur_cwnd = (prev_cwnd as f64 * BETA_CUBIC) as usize;
        assert_eq!(sender.congestion_window, cur_cwnd);

        // w_max will be further reduced, not prev_cwnd
        assert_eq!(
            sender.cubic_state.w_max,
            prev_cwnd as f64 * (1.0 + BETA_CUBIC) / 2.0
        );
    }
}