quiche/recovery/congestion/pacer.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
// Copyright (C) 2022, Cloudflare, Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//! Pacer provides the timestamp for the next packet to be sent based on the
//! current send_quantum, pacing rate and last updated time.
//!
//! It's a kind of leaky bucket algorithm (RFC9002, 7.7 Pacing) but it considers
//! max burst (send_quantum, in bytes) and provide the same timestamp for the
//! same sized packets (except last one) to be GSO friendly, assuming we send
//! packets using multiple sendmsg(), a sendmmsg(), or sendmsg() with GSO
//! without waiting for new I/O events.
//!
//! After sending a burst of packets, the next timestamp will be updated based
//! on the current pacing rate. It will make actual timestamp sent and recorded
//! timestamp (Sent.time_sent) as close as possible. If GSO is not used, it will
//! still try to provide close timestamp if the send burst is implemented.
use std::time::Duration;
use std::time::Instant;
#[derive(Debug)]
pub struct Pacer {
/// Whether pacing is enabled.
enabled: bool,
/// Bucket capacity (bytes).
capacity: usize,
/// Bucket used (bytes).
used: usize,
/// Sending pacing rate (bytes/sec).
rate: u64,
/// Timestamp of the last packet sent time update.
last_update: Instant,
/// Timestamp of the next packet to be sent.
next_time: Instant,
/// Current MSS.
max_datagram_size: usize,
/// Last packet size.
last_packet_size: Option<usize>,
/// Interval to be added in next burst.
iv: Duration,
/// Max pacing rate (bytes/sec).
max_pacing_rate: Option<u64>,
}
impl Pacer {
pub fn new(
enabled: bool, capacity: usize, rate: u64, max_datagram_size: usize,
max_pacing_rate: Option<u64>,
) -> Self {
// Round capacity to MSS.
let capacity = capacity / max_datagram_size * max_datagram_size;
let pacing_rate = if let Some(max_rate) = max_pacing_rate {
max_rate.min(rate)
} else {
rate
};
Pacer {
enabled,
capacity,
used: 0,
rate: pacing_rate,
last_update: Instant::now(),
next_time: Instant::now(),
max_datagram_size,
last_packet_size: None,
iv: Duration::ZERO,
max_pacing_rate,
}
}
/// Returns whether pacing is enabled.
pub fn enabled(&self) -> bool {
self.enabled
}
/// Returns the current pacing rate.
pub fn rate(&self) -> u64 {
self.rate
}
/// Returns max pacing rate.
pub fn max_pacing_rate(&self) -> Option<u64> {
self.max_pacing_rate
}
/// Updates the bucket capacity or pacing_rate.
pub fn update(&mut self, capacity: usize, rate: u64, now: Instant) {
let capacity = capacity / self.max_datagram_size * self.max_datagram_size;
if self.capacity != capacity {
self.reset(now);
}
self.capacity = capacity;
self.rate = if let Some(max_rate) = self.max_pacing_rate {
max_rate.min(rate)
} else {
rate
};
}
/// Resets the pacer for the next burst.
fn reset(&mut self, now: Instant) {
self.used = 0;
self.last_update = now;
self.next_time = self.next_time.max(now);
self.last_packet_size = None;
self.iv = Duration::ZERO;
}
/// Updates the timestamp for the packet to send.
pub fn send(&mut self, packet_size: usize, now: Instant) {
if self.rate() == 0 {
self.reset(now);
return;
}
if !self.iv.is_zero() {
self.next_time = self.next_time.max(now) + self.iv;
self.iv = Duration::ZERO;
}
let interval =
Duration::from_secs_f64(self.capacity as f64 / self.rate() as f64);
let elapsed = now.saturating_duration_since(self.last_update);
// If too old, reset it.
if elapsed > interval {
self.reset(now);
}
self.used += packet_size;
let same_size = if let Some(last_packet_size) = self.last_packet_size {
last_packet_size == packet_size
} else {
true
};
self.last_packet_size = Some(packet_size);
if self.used >= self.capacity || !same_size {
self.iv =
Duration::from_secs_f64(self.used as f64 / self.rate() as f64);
self.used = 0;
self.last_update = now;
self.last_packet_size = None;
};
}
/// Returns the timestamp for the next packet.
pub fn next_time(&self) -> Instant {
self.next_time
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn pacer_update() {
let datagram_size = 1200;
let max_burst = datagram_size * 10;
let pacing_rate = 100_000;
let mut p = Pacer::new(true, max_burst, pacing_rate, datagram_size, None);
let now = Instant::now();
// Send 6000 (half of max_burst) -> no timestamp change yet.
p.send(6000, now);
assert!(now.duration_since(p.next_time()) < Duration::from_millis(1));
// Send 6000 bytes -> max_burst filled.
p.send(6000, now);
assert!(now.duration_since(p.next_time()) < Duration::from_millis(1));
// Start of a new burst.
let now = now + Duration::from_millis(5);
// Send 1000 bytes and next_time is updated.
p.send(1000, now);
let interval = max_burst as f64 / pacing_rate as f64;
assert_eq!(p.next_time() - now, Duration::from_secs_f64(interval));
}
#[test]
/// Same as pacer_update() but adds some idle time between transfers to
/// trigger a reset.
fn pacer_idle() {
let datagram_size = 1200;
let max_burst = datagram_size * 10;
let pacing_rate = 100_000;
let mut p = Pacer::new(true, max_burst, pacing_rate, datagram_size, None);
let now = Instant::now();
// Send 6000 (half of max_burst) -> no timestamp change yet.
p.send(6000, now);
assert!(now.duration_since(p.next_time()) < Duration::from_millis(1));
// Sleep 200ms to reset the idle pacer (at least 120ms).
let now = now + Duration::from_millis(200);
// Send 6000 bytes -> idle reset and a new burst isstarted.
p.send(6000, now);
assert_eq!(p.next_time(), now);
}
#[test]
fn pacer_set_max_pacing_rate() {
let datagram_size = 1200;
let max_burst = datagram_size * 10;
let pacing_rate = 100_000;
let max_pacing_rate = 50_000;
// Use the max_pacing_rate.
let mut p = Pacer::new(
true,
max_burst,
pacing_rate,
datagram_size,
Some(max_pacing_rate),
);
let now = Instant::now();
// Send 6000 (half of max_burst) -> no timestamp change yet.
p.send(6000, now);
assert!(now.duration_since(p.next_time()) < Duration::from_millis(1));
// Send 6000 bytes -> max_burst filled.
p.send(6000, now);
assert!(now.duration_since(p.next_time()) < Duration::from_millis(1));
// Start of a second burst.
let now = now + Duration::from_millis(5);
p.send(12000, now);
let second_burst_send_time = p.next_time();
let interval = max_burst as f64 / max_pacing_rate as f64;
assert_eq!(
second_burst_send_time - now,
Duration::from_secs_f64(interval)
);
// Start of third burst
let now = now + Duration::from_millis(5);
// Update pacer rate.
p.update(max_burst, 75_000, now);
p.send(12000, now);
let third_burst_send_time = p.next_time();
assert_eq!(
third_burst_send_time - second_burst_send_time,
Duration::from_secs_f64(interval)
);
}
}