quiche/recovery/congestion/prr.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
// Copyright (C) 2021, Cloudflare, Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//! Proportional Rate Reduction
//!
//! This implementation is based on the following RFC:
//!
//! <https://datatracker.ietf.org/doc/html/rfc6937>
use std::cmp;
#[derive(Default, Debug)]
pub struct PRR {
// Total bytes delivered during recovery.
prr_delivered: usize,
// FlightSize at the start of recovery.
recoverfs: usize,
// Total bytes sent during recovery.
prr_out: usize,
// Total additional bytes can be sent for retransmit during recovery.
pub snd_cnt: usize,
}
impl PRR {
pub fn on_packet_sent(&mut self, sent_bytes: usize) {
self.prr_out += sent_bytes;
self.snd_cnt = self.snd_cnt.saturating_sub(sent_bytes);
}
pub fn congestion_event(&mut self, bytes_in_flight: usize) {
self.prr_delivered = 0;
self.recoverfs = bytes_in_flight;
self.prr_out = 0;
self.snd_cnt = 0;
}
pub fn on_packet_acked(
&mut self, delivered_data: usize, pipe: usize, ssthresh: usize,
max_datagram_size: usize,
) {
self.prr_delivered += delivered_data;
self.snd_cnt = if pipe > ssthresh {
// Proportional Rate Reduction.
if self.recoverfs > 0 {
((self.prr_delivered * ssthresh + self.recoverfs - 1) /
self.recoverfs)
.saturating_sub(self.prr_out)
} else {
0
}
} else {
// PRR-SSRB.
let limit = cmp::max(
self.prr_delivered.saturating_sub(self.prr_out),
delivered_data,
) + max_datagram_size;
// Attempt to catch up, as permitted by limit
cmp::min(ssthresh - pipe, limit)
};
// snd_cnt should be a positive number.
self.snd_cnt = cmp::max(self.snd_cnt, 0);
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn congestion_event() {
let mut prr = PRR::default();
let bytes_in_flight = 1000;
prr.congestion_event(bytes_in_flight);
assert_eq!(prr.recoverfs, bytes_in_flight);
assert_eq!(prr.snd_cnt, 0);
}
#[test]
fn on_packet_sent() {
let mut prr = PRR::default();
let bytes_in_flight = 1000;
let bytes_sent = 500;
prr.congestion_event(bytes_in_flight);
prr.on_packet_sent(bytes_sent);
assert_eq!(prr.prr_out, bytes_sent);
assert_eq!(prr.snd_cnt, 0);
}
#[test]
fn on_packet_acked_prr() {
let mut prr = PRR::default();
let max_datagram_size = 1000;
let bytes_in_flight = max_datagram_size * 10;
let ssthresh = bytes_in_flight / 2;
let acked = 1000;
prr.congestion_event(bytes_in_flight);
// pipe > ssthresh uses PRR algorithm.
let pipe = bytes_in_flight;
prr.on_packet_acked(acked, pipe, ssthresh, max_datagram_size);
assert_eq!(prr.snd_cnt, 500);
let snd_cnt = prr.snd_cnt;
// send one more allowed by snd_cnt
prr.on_packet_sent(snd_cnt);
prr.on_packet_acked(acked, pipe, ssthresh, max_datagram_size);
assert_eq!(prr.snd_cnt, 500);
}
#[test]
fn on_packet_acked_prr_overflow() {
let mut prr = PRR::default();
let max_datagram_size = 1000;
let bytes_in_flight = max_datagram_size * 10;
let ssthresh = bytes_in_flight / 2;
let acked = 1000;
prr.congestion_event(bytes_in_flight);
prr.on_packet_sent(max_datagram_size);
// pipe > ssthresh uses PRR algorithm.
let pipe = bytes_in_flight + max_datagram_size;
prr.on_packet_acked(acked, pipe, ssthresh, max_datagram_size);
assert_eq!(prr.snd_cnt, 0);
}
#[test]
fn on_packet_acked_prr_zero_in_flight() {
let mut prr = PRR::default();
let max_datagram_size = 1000;
let bytes_in_flight = 0;
let ssthresh = 3000;
let acked = 1000;
prr.congestion_event(bytes_in_flight);
// pipe > ssthresh uses PRR algorithm.
let pipe = ssthresh + 1000;
prr.on_packet_acked(acked, pipe, ssthresh, max_datagram_size);
assert_eq!(prr.snd_cnt, 0);
}
#[test]
fn on_packet_acked_prr_ssrb() {
let mut prr = PRR::default();
let max_datagram_size = 1000;
let bytes_in_flight = max_datagram_size * 10;
let ssthresh = bytes_in_flight / 2;
let acked = 1000;
prr.congestion_event(bytes_in_flight);
// pipe <= ssthresh uses PRR-SSRB algorithm.
let pipe = max_datagram_size;
prr.on_packet_acked(acked, pipe, ssthresh, max_datagram_size);
assert_eq!(prr.snd_cnt, 2000);
let snd_cnt = prr.snd_cnt;
// send one more allowed by snd_cnt
prr.on_packet_sent(snd_cnt);
prr.on_packet_acked(acked, pipe, ssthresh, max_datagram_size);
assert_eq!(prr.snd_cnt, 2000);
}
#[test]
fn on_packet_acked_prr_ssrb_overflow() {
let mut prr = PRR::default();
let max_datagram_size = 1000;
let bytes_in_flight = max_datagram_size * 10;
let ssthresh = bytes_in_flight / 2;
let acked = 500;
prr.congestion_event(bytes_in_flight);
// pipe <= ssthresh uses PRR-SSRB algorithm.
let pipe = max_datagram_size;
prr.on_packet_sent(max_datagram_size);
prr.on_packet_acked(acked, pipe, ssthresh, max_datagram_size);
assert_eq!(prr.snd_cnt, 1500);
}
}