quiche/recovery/gcongestion/bbr/windowed_filter.rs
1// Copyright (c) 2016 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5// Implements Kathleen Nichols' algorithm for tracking the minimum (or maximum)
6// estimate of a stream of samples over some fixed time interval. (E.g.,
7// the minimum RTT over the past five minutes.) The algorithm keeps track of
8// the best, second best, and third best min (or max) estimates, maintaining an
9// invariant that the measurement time of the n'th best >= n-1'th best.
10
11// The algorithm works as follows. On a reset, all three estimates are set to
12// the same sample. The second best estimate is then recorded in the second
13// quarter of the window, and a third best estimate is recorded in the second
14// half of the window, bounding the worst case error when the true min is
15// monotonically increasing (or true max is monotonically decreasing) over the
16// window.
17//
18// A new best sample replaces all three estimates, since the new best is lower
19// (or higher) than everything else in the window and it is the most recent.
20// The window thus effectively gets reset on every new min. The same property
21// holds true for second best and third best estimates. Specifically, when a
22// sample arrives that is better than the second best but not better than the
23// best, it replaces the second and third best estimates but not the best
24// estimate. Similarly, a sample that is better than the third best estimate
25// but not the other estimates replaces only the third best estimate.
26//
27// Finally, when the best expires, it is replaced by the second best, which in
28// turn is replaced by the third best. The newest sample replaces the third
29// best.
30
31use std::ops::Div;
32use std::ops::Sub;
33
34#[derive(Debug, Clone, Copy)]
35struct Sample<T, I> {
36 sample: T,
37 time: I,
38}
39
40#[derive(Debug)]
41pub struct WindowedFilter<T, I, D> {
42 window_length: D,
43 estimates: [Option<Sample<T, I>>; 3],
44}
45
46impl<T, I, D> WindowedFilter<T, I, D>
47where
48 T: Ord + Copy,
49 I: Sub<I, Output = D> + Copy,
50 D: Ord + Div<usize, Output = D> + Copy,
51{
52 pub fn new(window_length: D) -> Self {
53 WindowedFilter {
54 window_length,
55 estimates: [None, None, None],
56 }
57 }
58
59 pub fn reset(&mut self, new_sample: T, new_time: I) {
60 let sample = Some(Sample {
61 sample: new_sample,
62 time: new_time,
63 });
64
65 self.estimates = [sample, sample, sample];
66 }
67
68 pub fn get_best(&self) -> Option<T> {
69 self.estimates[0].as_ref().map(|e| e.sample)
70 }
71
72 pub fn get_second_best(&self) -> Option<T> {
73 self.estimates[1].as_ref().map(|e| e.sample)
74 }
75
76 pub fn get_third_best(&self) -> Option<T> {
77 self.estimates[2].as_ref().map(|e| e.sample)
78 }
79
80 pub fn clear(&mut self) {
81 self.estimates = [None, None, None];
82 }
83
84 pub fn update(&mut self, new_sample: T, new_time: I) {
85 // Reset all estimates if they have not yet been initialized, if new
86 // sample is a new best, or if the newest recorded estimate is too
87 // old.
88 if match &self.estimates[0] {
89 None => true,
90 Some(best) if new_sample > best.sample => true,
91 _ =>
92 new_time - self.estimates[2].as_ref().unwrap().time >
93 self.window_length,
94 } {
95 return self.reset(new_sample, new_time);
96 }
97
98 if new_sample > self.estimates[1].unwrap().sample {
99 self.estimates[1] = Some(Sample {
100 sample: new_sample,
101 time: new_time,
102 });
103 self.estimates[2] = self.estimates[1];
104 } else if new_sample > self.estimates[2].unwrap().sample {
105 self.estimates[2] = Some(Sample {
106 sample: new_sample,
107 time: new_time,
108 });
109 }
110
111 // Expire and update estimates as necessary.
112 if new_time - self.estimates[0].unwrap().time > self.window_length {
113 // The best estimate hasn't been updated for an entire window, so
114 // promote second and third best estimates.
115 self.estimates[0] = self.estimates[1];
116 self.estimates[1] = self.estimates[2];
117 self.estimates[2] = Some(Sample {
118 sample: new_sample,
119 time: new_time,
120 });
121 // Need to iterate one more time. Check if the new best estimate is
122 // outside the window as well, since it may also have been recorded a
123 // long time ago. Don't need to iterate once more since we cover that
124 // case at the beginning of the method.
125 if new_time - self.estimates[0].unwrap().time > self.window_length {
126 self.estimates[0] = self.estimates[1];
127 self.estimates[1] = self.estimates[2];
128 }
129 return;
130 }
131
132 if self.estimates[1].unwrap().sample == self.estimates[0].unwrap().sample &&
133 new_time - self.estimates[1].unwrap().time > self.window_length / 4
134 {
135 // A quarter of the window has passed without a better sample, so the
136 // second-best estimate is taken from the second quarter of the
137 // window.
138 self.estimates[1] = Some(Sample {
139 sample: new_sample,
140 time: new_time,
141 });
142 self.estimates[2] = self.estimates[1];
143 return;
144 }
145
146 if self.estimates[2].unwrap().sample == self.estimates[1].unwrap().sample &&
147 new_time - self.estimates[2].unwrap().time > self.window_length / 2
148 {
149 // We've passed a half of the window without a better estimate, so
150 // take a third-best estimate from the second half of the
151 // window.
152 self.estimates[2] = Some(Sample {
153 sample: new_sample,
154 time: new_time,
155 });
156 }
157 }
158}