quiche/stream/send_buf.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
// Copyright (C) 2023, Cloudflare, Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
use std::cmp;
use std::collections::VecDeque;
use crate::Error;
use crate::Result;
use crate::ranges;
use super::RangeBuf;
#[cfg(test)]
const SEND_BUFFER_SIZE: usize = 5;
#[cfg(not(test))]
const SEND_BUFFER_SIZE: usize = 4096;
/// Send-side stream buffer.
///
/// Stream data scheduled to be sent to the peer is buffered in a list of data
/// chunks ordered by offset in ascending order. Contiguous data can then be
/// read into a slice.
///
/// By default, new data is appended at the end of the stream, but data can be
/// inserted at the start of the buffer (this is to allow data that needs to be
/// retransmitted to be re-buffered).
#[derive(Debug, Default)]
pub struct SendBuf {
/// Chunks of data to be sent, ordered by offset.
data: VecDeque<RangeBuf>,
/// The index of the buffer that needs to be sent next.
pos: usize,
/// The maximum offset of data buffered in the stream.
off: u64,
/// The maximum offset of data sent to the peer, regardless of
/// retransmissions.
emit_off: u64,
/// The amount of data currently buffered.
len: u64,
/// The maximum offset we are allowed to send to the peer.
max_data: u64,
/// The last offset the stream was blocked at, if any.
blocked_at: Option<u64>,
/// The final stream offset written to the stream, if any.
fin_off: Option<u64>,
/// Whether the stream's send-side has been shut down.
shutdown: bool,
/// Ranges of data offsets that have been acked.
acked: ranges::RangeSet,
/// The error code received via STOP_SENDING.
error: Option<u64>,
}
impl SendBuf {
/// Creates a new send buffer.
pub fn new(max_data: u64) -> SendBuf {
SendBuf {
max_data,
..SendBuf::default()
}
}
/// Inserts the given slice of data at the end of the buffer.
///
/// The number of bytes that were actually stored in the buffer is returned
/// (this may be lower than the size of the input buffer, in case of partial
/// writes).
pub fn write(&mut self, mut data: &[u8], mut fin: bool) -> Result<usize> {
let max_off = self.off + data.len() as u64;
// Get the stream send capacity. This will return an error if the stream
// was stopped.
let capacity = self.cap()?;
if data.len() > capacity {
// Truncate the input buffer according to the stream's capacity.
let len = capacity;
data = &data[..len];
// We are not buffering the full input, so clear the fin flag.
fin = false;
}
if let Some(fin_off) = self.fin_off {
// Can't write past final offset.
if max_off > fin_off {
return Err(Error::FinalSize);
}
// Can't "undo" final offset.
if max_off == fin_off && !fin {
return Err(Error::FinalSize);
}
}
if fin {
self.fin_off = Some(max_off);
}
// Don't queue data that was already fully acked.
if self.ack_off() >= max_off {
return Ok(data.len());
}
// We already recorded the final offset, so we can just discard the
// empty buffer now.
if data.is_empty() {
return Ok(data.len());
}
let mut len = 0;
// Split the remaining input data into consistently-sized buffers to
// avoid fragmentation.
for chunk in data.chunks(SEND_BUFFER_SIZE) {
len += chunk.len();
let fin = len == data.len() && fin;
let buf = RangeBuf::from(chunk, self.off, fin);
// The new data can simply be appended at the end of the send buffer.
self.data.push_back(buf);
self.off += chunk.len() as u64;
self.len += chunk.len() as u64;
}
Ok(len)
}
/// Writes data from the send buffer into the given output buffer.
pub fn emit(&mut self, out: &mut [u8]) -> Result<(usize, bool)> {
let mut out_len = out.len();
let out_off = self.off_front();
let mut next_off = out_off;
while out_len > 0 {
let off_front = self.off_front();
if self.is_empty() ||
off_front >= self.off ||
off_front != next_off ||
off_front >= self.max_data
{
break;
}
let buf = match self.data.get_mut(self.pos) {
Some(v) => v,
None => break,
};
if buf.is_empty() {
self.pos += 1;
continue;
}
let buf_len = cmp::min(buf.len(), out_len);
let partial = buf_len < buf.len();
// Copy data to the output buffer.
let out_pos = (next_off - out_off) as usize;
out[out_pos..out_pos + buf_len].copy_from_slice(&buf[..buf_len]);
self.len -= buf_len as u64;
out_len -= buf_len;
next_off = buf.off() + buf_len as u64;
buf.consume(buf_len);
if partial {
// We reached the maximum capacity, so end here.
break;
}
self.pos += 1;
}
// Override the `fin` flag set for the output buffer by matching the
// buffer's maximum offset against the stream's final offset (if known).
//
// This is more efficient than tracking `fin` using the range buffers
// themselves, and lets us avoid queueing empty buffers just so we can
// propagate the final size.
let fin = self.fin_off == Some(next_off);
// Record the largest offset that has been sent so we can accurately
// report final_size
self.emit_off = cmp::max(self.emit_off, next_off);
Ok((out.len() - out_len, fin))
}
/// Updates the max_data limit to the given value.
pub fn update_max_data(&mut self, max_data: u64) {
self.max_data = cmp::max(self.max_data, max_data);
}
/// Updates the last offset the stream was blocked at, if any.
pub fn update_blocked_at(&mut self, blocked_at: Option<u64>) {
self.blocked_at = blocked_at;
}
/// The last offset the stream was blocked at, if any.
pub fn blocked_at(&self) -> Option<u64> {
self.blocked_at
}
/// Increments the acked data offset.
pub fn ack(&mut self, off: u64, len: usize) {
self.acked.insert(off..off + len as u64);
}
pub fn ack_and_drop(&mut self, off: u64, len: usize) {
self.ack(off, len);
let ack_off = self.ack_off();
if self.data.is_empty() {
return;
}
if off > ack_off {
return;
}
let mut drop_until = None;
// Drop contiguously acked data from the front of the buffer.
for (i, buf) in self.data.iter_mut().enumerate() {
// Newly acked range is past highest contiguous acked range, so we
// can't drop it.
if buf.off >= ack_off {
break;
}
// Highest contiguous acked range falls within newly acked range,
// so we can't drop it.
if buf.off < ack_off && ack_off < buf.max_off() {
break;
}
// Newly acked range can be dropped.
drop_until = Some(i);
}
if let Some(drop) = drop_until {
self.data.drain(..=drop);
// When a buffer is marked for retransmission, but then acked before
// it could be retransmitted, we might end up decreasing the SendBuf
// position too much, so make sure that doesn't happen.
self.pos = self.pos.saturating_sub(drop + 1);
}
}
pub fn retransmit(&mut self, off: u64, len: usize) {
let max_off = off + len as u64;
let ack_off = self.ack_off();
if self.data.is_empty() {
return;
}
if max_off <= ack_off {
return;
}
for i in 0..self.data.len() {
let buf = &mut self.data[i];
if buf.off >= max_off {
break;
}
if off > buf.max_off() {
continue;
}
// Split the buffer into 2 if the retransmit range ends before the
// buffer's final offset.
let new_buf = if buf.off < max_off && max_off < buf.max_off() {
Some(buf.split_off((max_off - buf.off) as usize))
} else {
None
};
let prev_pos = buf.pos;
// Reduce the buffer's position (expand the buffer) if the retransmit
// range is past the buffer's starting offset.
buf.pos = if off > buf.off && off <= buf.max_off() {
cmp::min(buf.pos, buf.start + (off - buf.off) as usize)
} else {
buf.start
};
self.pos = cmp::min(self.pos, i);
self.len += (prev_pos - buf.pos) as u64;
if let Some(b) = new_buf {
self.data.insert(i + 1, b);
}
}
}
/// Resets the stream at the current offset and clears all buffered data.
pub fn reset(&mut self) -> (u64, u64) {
let unsent_off = cmp::max(self.off_front(), self.emit_off);
let unsent_len = self.off_back().saturating_sub(unsent_off);
self.fin_off = Some(unsent_off);
// Drop all buffered data.
self.data.clear();
// Mark relevant data as acked.
self.off = unsent_off;
self.ack(0, self.off as usize);
self.pos = 0;
self.len = 0;
(self.emit_off, unsent_len)
}
/// Resets the streams and records the received error code.
///
/// Calling this again after the first time has no effect.
pub fn stop(&mut self, error_code: u64) -> Result<(u64, u64)> {
if self.error.is_some() {
return Err(Error::Done);
}
let (max_off, unsent) = self.reset();
self.error = Some(error_code);
Ok((max_off, unsent))
}
/// Shuts down sending data.
pub fn shutdown(&mut self) -> Result<(u64, u64)> {
if self.shutdown {
return Err(Error::Done);
}
self.shutdown = true;
Ok(self.reset())
}
/// Returns the largest offset of data buffered.
pub fn off_back(&self) -> u64 {
self.off
}
/// Returns the lowest offset of data buffered.
pub fn off_front(&self) -> u64 {
let mut pos = self.pos;
// Skip empty buffers from the start of the queue.
while let Some(b) = self.data.get(pos) {
if !b.is_empty() {
return b.off();
}
pos += 1;
}
self.off
}
/// The maximum offset we are allowed to send to the peer.
pub fn max_off(&self) -> u64 {
self.max_data
}
/// Returns true if all data in the stream has been sent.
///
/// This happens when the stream's send final size is known, and the
/// application has already written data up to that point.
pub fn is_fin(&self) -> bool {
if self.fin_off == Some(self.off) {
return true;
}
false
}
/// Returns true if the send-side of the stream is complete.
///
/// This happens when the stream's send final size is known, and the peer
/// has already acked all stream data up to that point.
pub fn is_complete(&self) -> bool {
if let Some(fin_off) = self.fin_off {
if self.acked == (0..fin_off) {
return true;
}
}
false
}
/// Returns true if the stream was stopped before completion.
pub fn is_stopped(&self) -> bool {
self.error.is_some()
}
/// Returns true if the stream was shut down.
pub fn is_shutdown(&self) -> bool {
self.shutdown
}
/// Returns true if there is no data.
pub fn is_empty(&self) -> bool {
self.data.is_empty()
}
/// Returns the highest contiguously acked offset.
pub fn ack_off(&self) -> u64 {
match self.acked.iter().next() {
// Only consider the initial range if it contiguously covers the
// start of the stream (i.e. from offset 0).
Some(std::ops::Range { start: 0, end }) => end,
Some(_) | None => 0,
}
}
/// Returns the outgoing flow control capacity.
pub fn cap(&self) -> Result<usize> {
// The stream was stopped, so return the error code instead.
if let Some(e) = self.error {
return Err(Error::StreamStopped(e));
}
Ok((self.max_data - self.off) as usize)
}
/// Returns the number of separate buffers stored.
#[allow(dead_code)]
pub fn bufs_count(&self) -> usize {
self.data.len()
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn empty_write() {
let mut buf = [0; 5];
let mut send = SendBuf::new(u64::MAX);
assert_eq!(send.len, 0);
let (written, fin) = send.emit(&mut buf).unwrap();
assert_eq!(written, 0);
assert!(!fin);
}
#[test]
fn multi_write() {
let mut buf = [0; 128];
let mut send = SendBuf::new(u64::MAX);
assert_eq!(send.len, 0);
let first = b"something";
let second = b"helloworld";
assert!(send.write(first, false).is_ok());
assert_eq!(send.len, 9);
assert!(send.write(second, true).is_ok());
assert_eq!(send.len, 19);
let (written, fin) = send.emit(&mut buf[..128]).unwrap();
assert_eq!(written, 19);
assert!(fin);
assert_eq!(&buf[..written], b"somethinghelloworld");
assert_eq!(send.len, 0);
}
#[test]
fn split_write() {
let mut buf = [0; 10];
let mut send = SendBuf::new(u64::MAX);
assert_eq!(send.len, 0);
let first = b"something";
let second = b"helloworld";
assert!(send.write(first, false).is_ok());
assert_eq!(send.len, 9);
assert!(send.write(second, true).is_ok());
assert_eq!(send.len, 19);
assert_eq!(send.off_front(), 0);
let (written, fin) = send.emit(&mut buf[..10]).unwrap();
assert_eq!(written, 10);
assert!(!fin);
assert_eq!(&buf[..written], b"somethingh");
assert_eq!(send.len, 9);
assert_eq!(send.off_front(), 10);
let (written, fin) = send.emit(&mut buf[..5]).unwrap();
assert_eq!(written, 5);
assert!(!fin);
assert_eq!(&buf[..written], b"ellow");
assert_eq!(send.len, 4);
assert_eq!(send.off_front(), 15);
let (written, fin) = send.emit(&mut buf[..10]).unwrap();
assert_eq!(written, 4);
assert!(fin);
assert_eq!(&buf[..written], b"orld");
assert_eq!(send.len, 0);
assert_eq!(send.off_front(), 19);
}
#[test]
fn resend() {
let mut buf = [0; 15];
let mut send = SendBuf::new(u64::MAX);
assert_eq!(send.len, 0);
assert_eq!(send.off_front(), 0);
let first = b"something";
let second = b"helloworld";
assert!(send.write(first, false).is_ok());
assert_eq!(send.off_front(), 0);
assert!(send.write(second, true).is_ok());
assert_eq!(send.off_front(), 0);
assert_eq!(send.len, 19);
let (written, fin) = send.emit(&mut buf[..4]).unwrap();
assert_eq!(written, 4);
assert!(!fin);
assert_eq!(&buf[..written], b"some");
assert_eq!(send.len, 15);
assert_eq!(send.off_front(), 4);
let (written, fin) = send.emit(&mut buf[..5]).unwrap();
assert_eq!(written, 5);
assert!(!fin);
assert_eq!(&buf[..written], b"thing");
assert_eq!(send.len, 10);
assert_eq!(send.off_front(), 9);
let (written, fin) = send.emit(&mut buf[..5]).unwrap();
assert_eq!(written, 5);
assert!(!fin);
assert_eq!(&buf[..written], b"hello");
assert_eq!(send.len, 5);
assert_eq!(send.off_front(), 14);
send.retransmit(4, 5);
assert_eq!(send.len, 10);
assert_eq!(send.off_front(), 4);
send.retransmit(0, 4);
assert_eq!(send.len, 14);
assert_eq!(send.off_front(), 0);
let (written, fin) = send.emit(&mut buf[..11]).unwrap();
assert_eq!(written, 9);
assert!(!fin);
assert_eq!(&buf[..written], b"something");
assert_eq!(send.len, 5);
assert_eq!(send.off_front(), 14);
let (written, fin) = send.emit(&mut buf[..11]).unwrap();
assert_eq!(written, 5);
assert!(fin);
assert_eq!(&buf[..written], b"world");
assert_eq!(send.len, 0);
assert_eq!(send.off_front(), 19);
}
#[test]
fn write_blocked_by_off() {
let mut buf = [0; 10];
let mut send = SendBuf::default();
assert_eq!(send.len, 0);
let first = b"something";
let second = b"helloworld";
assert_eq!(send.write(first, false), Ok(0));
assert_eq!(send.len, 0);
assert_eq!(send.write(second, true), Ok(0));
assert_eq!(send.len, 0);
send.update_max_data(5);
assert_eq!(send.write(first, false), Ok(5));
assert_eq!(send.len, 5);
assert_eq!(send.write(second, true), Ok(0));
assert_eq!(send.len, 5);
assert_eq!(send.off_front(), 0);
let (written, fin) = send.emit(&mut buf[..10]).unwrap();
assert_eq!(written, 5);
assert!(!fin);
assert_eq!(&buf[..written], b"somet");
assert_eq!(send.len, 0);
assert_eq!(send.off_front(), 5);
let (written, fin) = send.emit(&mut buf[..10]).unwrap();
assert_eq!(written, 0);
assert!(!fin);
assert_eq!(&buf[..written], b"");
assert_eq!(send.len, 0);
send.update_max_data(15);
assert_eq!(send.write(&first[5..], false), Ok(4));
assert_eq!(send.len, 4);
assert_eq!(send.write(second, true), Ok(6));
assert_eq!(send.len, 10);
assert_eq!(send.off_front(), 5);
let (written, fin) = send.emit(&mut buf[..10]).unwrap();
assert_eq!(written, 10);
assert!(!fin);
assert_eq!(&buf[..10], b"hinghellow");
assert_eq!(send.len, 0);
send.update_max_data(25);
assert_eq!(send.write(&second[6..], true), Ok(4));
assert_eq!(send.len, 4);
assert_eq!(send.off_front(), 15);
let (written, fin) = send.emit(&mut buf[..10]).unwrap();
assert_eq!(written, 4);
assert!(fin);
assert_eq!(&buf[..written], b"orld");
assert_eq!(send.len, 0);
}
#[test]
fn zero_len_write() {
let mut buf = [0; 10];
let mut send = SendBuf::new(u64::MAX);
assert_eq!(send.len, 0);
let first = b"something";
assert!(send.write(first, false).is_ok());
assert_eq!(send.len, 9);
assert!(send.write(&[], true).is_ok());
assert_eq!(send.len, 9);
assert_eq!(send.off_front(), 0);
let (written, fin) = send.emit(&mut buf[..10]).unwrap();
assert_eq!(written, 9);
assert!(fin);
assert_eq!(&buf[..written], b"something");
assert_eq!(send.len, 0);
}
/// Check SendBuf::len calculation on a retransmit case
#[test]
fn send_buf_len_on_retransmit() {
let mut buf = [0; 15];
let mut send = SendBuf::new(u64::MAX);
assert_eq!(send.len, 0);
assert_eq!(send.off_front(), 0);
let first = b"something";
assert!(send.write(first, false).is_ok());
assert_eq!(send.off_front(), 0);
assert_eq!(send.len, 9);
let (written, fin) = send.emit(&mut buf[..4]).unwrap();
assert_eq!(written, 4);
assert!(!fin);
assert_eq!(&buf[..written], b"some");
assert_eq!(send.len, 5);
assert_eq!(send.off_front(), 4);
send.retransmit(3, 5);
assert_eq!(send.len, 6);
assert_eq!(send.off_front(), 3);
}
#[test]
fn send_buf_final_size_retransmit() {
let mut buf = [0; 50];
let mut send = SendBuf::new(u64::MAX);
send.write(&buf, false).unwrap();
assert_eq!(send.off_front(), 0);
// Emit the whole buffer
let (written, _fin) = send.emit(&mut buf).unwrap();
assert_eq!(written, buf.len());
assert_eq!(send.off_front(), buf.len() as u64);
// Server decides to retransmit the last 10 bytes. It's possible
// it's not actually lost and that the client did receive it.
send.retransmit(40, 10);
// Server receives STOP_SENDING from client. The final_size we
// send in the RESET_STREAM should be 50. If we send anything less,
// it's a FINAL_SIZE_ERROR.
let (fin_off, unsent) = send.stop(0).unwrap();
assert_eq!(fin_off, 50);
assert_eq!(unsent, 0);
}
}